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Background and Hypothesis:  Cognitive control deficits are 
prominent in individuals with psychotic psychopathology. 
Studies providing evidence for deficits in proactive control 
generally examine average performance and not variation 
across trials for individuals—potentially obscuring detec-
tion of essential contributors to cognitive control. Here, we 
leverage intertrial variability through drift-diffusion models 
(DDMs) aiming to identify key contributors to cognitive 
control deficits in psychosis.  Study Design:  People with 
psychosis (PwP; N = 122), their first-degree biological 
relatives (N = 78), and controls (N = 50) each completed 
120 trials of the dot pattern expectancy (DPX) cognitive 
control task. We fit full hierarchical DDMs to response 
and reaction time (RT) data for individual trials and then 
used classification models to compare the DDM param-
eters with conventional measures of proactive and reactive 
control.  Study Results:  PwP demonstrated slower drift 
rates on proactive control trials suggesting less efficient 
use of cue information. Both PwP and relatives showed 
protracted nondecision times to infrequent trial sequences 
suggesting slowed perceptual processing. Classification 
analyses indicated that DDM parameters differentiated 
between the groups better than conventional measures and 
identified drift rates during proactive control, nondecision 
time during reactive control, and cue bias as most impor-
tant. DDM parameters were associated with real-world 
functioning and schizotypal traits.  Conclusions:  Modeling 
of trial-level data revealed that slow evidence accumulation 
and longer preparatory periods are the strongest contribu-
tors to cognitive control deficits in psychotic psychopa-
thology. This pattern of atypical responding during the 
DPX is consistent with shallow basins in attractor dynamic 
models that reflect difficulties in maintaining state repre-
sentations, possibly mediated by excess neural excitation 
or poor connectivity. 

Key words: dot pattern expectancy task/schizophrenia/drift 
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Introduction

Cognitive control is the ability to regulate, coordinate, 
and sequence thoughts and actions in accordance with 
internally maintained behavioral goals.1 Deficits of cog-
nitive control in psychotic psychopathology are often 
characterized by difficulties incorporating information 
about the context to determine a correct response (ie, 
proactive control).2,3 The AX-Continuous Performance 
Test (AX-CPT)4 and its non-letter variant the dot pattern 
expectancy task (DPX)5 were developed to capture cogni-
tive control. These tasks sequentially present the within-
stimulus conflicts in cognitive control tasks with “cue” 
(context) and “probe” periods (figure 1A). The stimulus 
sequences allow participants to engage in proactive or re-
active control by anticipating the correct response from 
the cue or probe.

Behavior on the AX-CPT and DPX tasks has typically 
been characterized using accuracy, average reaction times 
(RT) on correct trials, and indices based on these fea-
tures. A popular index, dʹ-context, assesses context proc-
essing via accuracy.6 Deficits in cognitive control among 
people with psychosis (PwP) are characterized by lower 
BX accuracy,7,8 prolonged RT,8,9 and lower dʹ-context.10,11 
Relatives of PwP often demonstrate attenuated deficits 
in these measures.11–15 While these approaches are ad-
equate for describing trends in the central tendencies of 
RT and accuracy, they omit within-subject variation in re-
sponding which contains valuable information about un-
derlying cognitive processes. Accuracy and RT have long 
been shown to be intertwined behavioral outcomes with 
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informative variation across trials. Assessing accuracy and 
RT independently via central tendencies underappreciates 
the speed-accuracy tradeoff in AX-CPT and DPX data.16

Drift-diffusion modeling (DDM) addresses accu-
racy and RT in a singular analysis that encompasses 

within-subject variability across trials (figure 1B). In 
DDMs, an underlying cognitive process noisily accu-
mulates evidence to produce a response. DDM charac-
terizes decision-making processes with 4 parameters, 
representing the rate of evidence accumulation (drift 

Fig. 1.  (A) The dot pattern expectancy (DPX) task. Each trial consists of a “cue” stimulus presentation followed by a “probe” stimulus 
after a brief  interstimulus interval (ISI). The stimuli consist of dot patterns with their only being 1 valid cue (A) and 1 valid probe 
(X) among similar invalid stimuli (B and Y). The most frequent cue-probe sequence is AX, which promotes a response prepotency 
on A cues for the target response. After each trial, there is a variable intertrial interval (ITI). (B) The drift-diffusion model (DDM). 
Four parameters are used by DDMs to fit the reaction time and error performance of the subject. These parameters are the bias (z), 
the decision threshold (a), the drift rate (v), and the nondecision time (t). These 4 parameters produce reaction time and response 
probabilities for the subjects’ target and nontarget responses. The ratio of the bias and decision threshold (z/a) is typically fit via 
hierarchical DDM, which is denoted here as w. (C) Error rate means and standard errors of participants in each group across trial 
types. (D) Reaction time means and standard errors of participants in each group across trial types. (E) The normalized reaction 
time probability density distributions for each group’s target and nontarget responses. The dots above each of the panels indicate the 
participant mean reaction times from panel B.
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rate, v), the amount of evidence required to act (deci-
sion threshold, a), prestimulus bias toward a particular 
response (bias, w), and response delay from non-decision-
making related processes (nondecision time, t). Given 
that PwP showed both longer RT and higher error rates 
in the AX-CPT and DPX tasks,8,10,17–19 we suspected that 
they could markedly differ from controls in how they ac-
cumulate evidence to produce responses.

DDM of task performance in people with schiz-
ophrenia has revealed deficits in drift rates and 
nondecision times on N-back and coding tasks.20–22 On 
a reward-punishment task, Moustafa et al.23 observed 
longer nondecision times, but with greater decision 
thresholds. Recent analyses by Smucny et al. suggested a 
slower drift rate in individuals with recent-onset schizo-
phrenia during reward anticipation,24 and cognitive con-
trol on the AX-CPT,25 but their analytic approach was 
limited and could not resolve differences in nondecision 
times or bias. One study demonstrated a heightened bias 
in schizophrenia with a temporal prediction task.26 The 
single study of  relatives identified slower drift rates and 
longer nondecision time in siblings of  individuals with 
schizophrenia than controls on a sustained attention 
task.21 Recent simulations27,28 of  the effects of  excitation-
inhibition imbalance suggest that longer nondecision 
times and slower accumulation rates observed in schizo-
phrenia could be attributed to deviations in the efficacy 
of  N-methyl-D-aspartate receptor (NMDAR)-mediated 
glutamate (excitation) and gamma-aminobutyric acid 
(GABA; inhibition). These deviations lead to weak 
neural representations of  stimuli within circuits required 
for appropriate responding. Magnetic resonance spec-
troscopy suggests that this weakening of  neural repre-
sentations is mediated by glutamatergic hypofunction.29 
The potential effects of  excitation-inhibition balance 
on responses and RT suggested that analyzing cognitive 
control through a full DDM of trial-level data would 
provide insights into psychosis.

We applied hierarchical DDMs to DPX RT and re-
sponse data obtained from PwP, their first-degree bio-
logical relatives, and controls. Our goal was to examine 
how subprocesses of  cognitive control differ across 
these groups during proactive and reactive control. We 
hypothesized that PwP would have longer nondecision 
times and slower drift rates, with similar but less severe 
anomalies in relatives. We expected a reduced bias in 
PwP given past findings of  deficits in proactive control. 
We predicted no differences in the decision threshold 
among groups.

Methods

Participants and Clinical Measures

Two hundred and eighty-six participants were recruited 
as part of the Psychosis Human Connectome Project. All 
participants underwent an informed consent procedure, 

gave written consent, and their capacity to provide in-
formed consent was evaluated using the University of 
California Brief  Assessment of Capacity to Consent.30 
All procedures were approved by the Institutional Review 
Board at the University of Minnesota, and were in ac-
cordance with the guidelines for human subjects research 
set by the Declaration of Helsinki. For a detailed de-
scription of the Psychosis Human Connectome Project, 
please see Demro et al.31 Among 259 participants who 
completed the DPX task, we excluded participants based 
on reported recent substance use that may affect per-
formance, or if  psychotic symptoms could be partially 
attributed to medical conditions. In addition, 7 partici-
pants did not meet inclusion criteria for the DPX task 
based on their responses (see details in the DPX section 
below). In summary, 122 PwP, 78 of their first-degree bi-
ological relatives, and 50 controls were included in the 
analysis. Participants completed a clinical interview and 
self-report questionnaires, as well as cognitive and motor 
assessments. Trained research assistants conducted the 
Structured Clinical Interview for DSM-IV-TR disorders,32 
and the Psychosis Module of the Diagnostic Interview for 
Genetic Studies33 with each of the participants to obtain 
diagnostic information. Diagnostic consensus was com-
pleted by a team of at least 2 qualified assessors (clinical 
psychology graduate students, postdoctoral associates, 
or licensed psychologists) to determine which diagnostic 
criteria were met, and reached consensus on the most ap-
propriate DSM diagnoses. Among the 122 PwP, 72 were 
individuals with schizophrenia or schizophreniform, 14 
were individuals with schizoaffective disorder, and 36 were 
individuals with bipolar disorder with psychosis. In ad-
dition to making diagnostic determinations, we also col-
lected symptomatology measures. The Brief  Psychiatric 
Rating Scale-24 Item Version (BPRS)34,35 and the Scales 
for the Assessment of Negative/Positive Symptoms36,37 
were used to assess the participants’ psychotic, depres-
sive, and manic symptoms for the 30 days leading up to 
the evaluation based on the participants recollection. The 
Schizotypal Personality Questionnaire was used to as-
sess schizotypal traits in participants as possible indica-
tors of manifestations of genetic liability for psychosis. 
Table 1 presents the demographics information of the 
participants.

The DPX Task and Conventional Measures

We used the dot pattern version of the AX-CPT cognitive 
control task, the DPX task, where stimuli were braille-
based arrangements of dots.5 On each trial, a cue stimulus 
and a probe stimulus were sequentially presented with an 
interstimulus interval of 2500 or 3500 ms (figure 1A). Cue 
and probe stimuli were differentiable by being colored 
white and light blue, respectively. Stimuli were grouped 
into “valid” and “invalid” categories and only when 
the cue and probe were both valid was the participant 
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supposed to provide a “target” response with the index 
finger of their right hand. The only target sequence was 
the valid cue (“A”) followed by the valid probe (“X”), 
and all other cue-probe combinations were considered 
nontarget (figure 1A). As such, there were 4 cue-probe 
permutations: AX, AY, BX, and BY. The participant was 
to provide a nontarget response with the middle finger of 
the same hand for any nontarget sequence (ie, AY, BX, or 
BY). An expectation bias was induced by having 60% of 
the cue-probe trials being the target sequence (AX). The 
remaining trials were distributed such that 15% of trials 
were AY, 15% BX, and 10% BY. Each participant re-
sponded to 120 trials that were equally distributed across 
3 blocks. While not analyzed in this manuscript, the par-
ticipants were undergoing functional magnetic resonance 
imaging (fMRI) during this task.

We evaluated the RT and participant response patterns 
to restrict the analysis to valid data. Participants were al-
lowed to respond in a 2000 ms response window and we 
excluded individual responses that were faster than 100 ms 
(too fast to have recognized the probe stimulus). Any block 
of trials that was unusable was excluded. An unusable 
block was defined as the participant providing only 1 type 
of response regardless of the trial sequence (eg, responding 
with either key for more than 95% of responded trials in 
a block) or the participant not responding for more than 
50% of trials (see supplementary figure 1 for distribution 
details). We required that participants have at least 2 of 
the 3 usable trial blocks to be included in the data set. If a 

participant’s responses were nearly perfectly the opposite 
of what the instructions indicated during a block, we re-
versed the participants’ responding (ie, nontarget to target 
and target to nontarget), because participants did not re-
ceive feedback while performing the task and, thus, could 
not correct their understanding of the task.

Based on these criteria, we excluded some of the par-
ticipants’ responses. About 2% of all responses were too 
fast. Seven participants were excluded due to having less 
than 2 usable blocks, and we removed an additional 3 un-
usable blocks from the remaining participants. One partic-
ipant was identified as having flipped the response buttons 
given their response patterns, which we corrected before 
including their behavior in the analysis. In conclusion, data 
from 250 participants were included in the analysis.

dʹ-context and Proactive Behavioral Index Calculation

A number of conventional measures have been used in the 
DPX literature to assess cognitive control. We calculated dʹ-
context scores, a measure of context processing, as the dif-
ference between correct responses to the AX trial sequence 
and incorrect responses to the BX trial sequence: z(AXHit) 
− z(BXFalseAlarm).6 A correction was applied so that the index 
could be calculated as suggested by Servan-Shreiber et al. 
(see supplementary methods).6 Higher dʹ-context scores 
are suggestive of better context processing. We calculated 
proactive behavioral index (PBI) for DPX with accuracy 
and RT by (AY − BX)/(AY + BX).3 This measure evaluates 

Table 1.  Demographics and Clinical Information of the Participants.

Controls Relatives PwP

Tests(N = 50) (N = 78) (N = 122)

Diagnoses/Diagnosis of Rela-
tive (N)

N/A Bipolar w/psychosis (24) 
Schizoaffective disorder (9)
Schizophrenia (45)

Bipolar w/psychosis (36)
Schizoaffective disorder (14)
Schizophrenia (72)

N/A

Age (SD) 38.7 (13.0) 44.2 (15.2) 37.1 (12.2) F(2,247) = 6.8, P = .001a

Female N (%) 25 (50%) 50 (64%) 54 (44%) χ2
(2) = 7.56, P = .02

Race (N) *P = .15
 � American Indian or Alaskan 

Native
0 0 1

 � Asian or Pacific Islander 1 1 6
 � Black, not of Hispanic Origin 3 4 19
 � Hispanic 0 3 5
 � White, not of Hispanic Origin 45 68 87
 � Other 1 2 4
Education (Years) 16.2 (2.5) 15.1 (2.2) 14.1 (2.1) F(2,246) = 17.43, P < .001b

Parent Education 6 6 6 **χ2
(2) = 4.60, P = .10

Estimated IQ (SD) 106.9 (11.0) 102.5 (11.0) 98.3 (11.2) F(2,247) = 11.28, P < .001c

BPRS total (SD) 27.7 (4.1) 32.2 (6.5) 45.2 (12.7) F(2,247) = 73.95, P < .001b

SPQ total (SD) 7.4 (7.8) 14.2 (12.5) 29.5 (15.7) F(2,247) = 59.66, P < .001b

Note: PwP, people with a history of psychosis; BPRS, The Brief  Psychiatric Rating Scale-24 Item Version; SPQ, Schizotypal Person-
ality Questionnaire. *Fisher’s exact test. Parent education: median of max of parents’ education; (1: 7th grade or less; 2: between 7th 
and 9th grade; 3: between 10th and 12th grade; 4: high school graduate/GED; 5: partial college; 6: college graduate; 7: graduate degree) 
**Kruskal-Wallis rank sum test. Significant post hoc group differences: a = relative vs PwP; b = all 3 groups differed from one another, 
c = PwP vs both controls and relatives.
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proactiveness by directly comparing error rates or RT of 
proactive vs reactive trial types. Higher PBIs suggest a 
preference for proactive control over reactive control. Due 
to poor psychometric properties (excessively kurtotic with 
large numbers of outliers), we did not relate the PBI accu-
racy with the DDM parameters.

Hierarchical DDM

Hierarchical DDMs were applied to the DPX task data 
across groups using the HDDM 0.9.1 Python package.38 
Since we had a priori reasons to believe that the evidence 
accumulation process would vary across groups, we fitted 
the hierarchical DDMs to each group separately. To de-
termine the best description of the participant behaviors, 
we fitted several models that varied whether the param-
eter values of a, t, and v parameters were consistent across 
trial sequences. We decided to only permit w to vary by 
the cue stimulus because it theoretically should only in-
fluence the start of the evidence accumulation process 
and should, thus, not be modified by the probe stimulus. 
We identified the best-fit models by comparing the devi-
ance information criteria and by evaluating how well the 
model converged. Model convergence was assessed via 
the Gelman-Rubin R̂ statistic.39

Conventional and DDM Statistical Analyses

All statistical analyses were conducted in R (version 
4.3.1)40 and corrected for age, biological sex, and family-
level dependencies. Conventional variables from DPX, 
including error rates and correct trial RT, and DDM 
parameters were examined by linear mixed-effect regres-
sion models (LMER) using the lme4 package (version 
1.1-33).41 Partial eta squared (ηp

2) were calculated for ef-
fect sizes. Post hoc analyses examining interaction and 
group effects were performed via the emmeans package 
(version 1.8.7)42 with multivariate t-distribution adjust-
ments for multiple comparisons. dʹ-context scores and 
PBIs were analyzed with one-way analyses of variance 
(ANOVAs), including post hoc group comparisons cor-
rected by multivariate t-distributions. Since most of the 
conventional measures were non-Gaussian, correlational 
analyses between conventional variables and DDM 
parameters were performed with the robust, nonpara-
metric Kendall’s Rank Correlation Tests.43 We controlled 
for the false discovery rate (FDR) when making multiple 
family-wise correlational tests.44

eXtreme Gradient Boosting Classifier and Shapley 
Value Model Explanation

To determine the multivariate predictive utility of 
DDM parameters, we used a nonparametric machine 
learning classification approach called eXtreme Gradient 

Boosting (XGBoost),45 implemented in the R package 
xgboost version 1.7.5. This classifier is more stable with a 
smaller sample size than competing methods like support 
vector machines.46,47 Additionally, this classifier is robust 
to class imbalance,48 which is ideal because our groups 
varied in sizes. We fit 3 classifiers to classify PwP from 
controls, PwP from first-degree relatives, and first-degree 
relatives from controls. We fit another 3 classifiers to clas-
sify across the same groups but with conventional behav-
ioral indices from the DPX: accuracy and RT of all 4 trial 
types and the PBI-RT, PBI-accuracy, and dʹ-context. All 
XGBoost analyses used the area under the receiver op-
erating characteristic curve (AUC) as the objective func-
tion. The AUC can range from 0 to 1, where 1 is perfect 
classification and 0.5 indicates completely random per-
formance for a binary outcome. XGBoost requires sev-
eral hyperparameters, which were tuned using Bayesian 
optimization in 25% of the sample. Classification models 
were then fitted to the remaining 75% of sample data 
using 5-fold cross-validation to avoid overfitting. Further 
details are included in supplementary methods.

XGBoost provides a powerful tool for machine 
learning classification, but multivariate machine learning 
models like XGBoost can suffer from reduced interpret-
ability due to the black-box nature of these models and 
the complicated model fitting process. We addressed this 
problem by applying a recently developed model explana-
tion tool to the output of each XGBoost classifier, using 
the R package SHAPforxgboost version 0.1.1.49 SHapley 
Additive exPlanations (SHAP),50,51 is an information the-
oretic approach that explains the output of a machine 
learning model by ranking the input variables according 
to which variables had the greatest independent contribu-
tion to the output of the classifier. Details of SHAP are 
included in supplementary methods.

Association Analysis

We performed regression analyses to examine the relation-
ships between DDM parameters and clinical measures 
across all participants and within the PwP group only. 
To focus on the most important parameters and mini-
mize multicollinearity, we identified parameters that were 
ranked more than once within the top 5 for group classifi-
cation utility and included them as independent variables 
in the regression models. Similarly, conventional measures 
of dʹ-context scores, and PBI-RT were included as inde-
pendent variables in a separate set of regression models. 
Factor scores from the BPRS for positive symptoms, 
negative symptoms, disorganization, mania, and depres-
sive symptoms,35 and factor scores from the Schizotypal 
Personality Questionnaire (SPQ) for interpersonal func-
tioning, cognitive-perceptual anomalies, and disorganiza-
tion were included as dependent variables.52 Finally, social 
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and role functioning were examined as dependent variables 
to evaluate the relationship of cognitive control indices to 
real-world functioning. Age, sex, and random effects of 
family were included as covariates when applicable. All 
DDM parameters, conventional measures, and symptom 
measures were standardized to enable simple comparisons. 
FDR corrections within regressions were performed to 
control for multiple comparisons.

Results

Conventional Measures of DPX

Error Rates.  Groups differed in their error rates (figure 
1C). A LMER model of error rates revealed a main ef-
fect of group (F(2,234.63) = 4.32, P = .01, ηp

2 = 0.04), a 
main effect of trial sequences (F(3,741) = 33.61, P < .001, 
ηp

2 = 0.12), and an interaction between group and trial 
sequence (F(6,741) = 2.46, P = .02, ηp

2 = 0.02). Consistent 
with past literature, PwP made more errors on BX trials 
than controls (t(685) = 3.65, P < .001, ηp

2 = 0.02) and rela-
tives (t(652) = −3.86, P < .001, ηp

2 = 0.02), while controls 
and relatives did not differ on BX error rates (t(613) = 0.20, 
P = .98, ηp

2 < 0.01). The groups did not differ signifi-
cantly on the other trial sequences (|t|s< 1.49, Ps > .30).

RT.  Groups also differed in their RT (figure 2B). A 
LMER model of the by-individual mean correct response 
RT showed a main effect of group (F(2,170.39) = 11.83, 
P < .001, ηp

2 = 0.12), a main effect of trial sequence 
(F(3,733.36) = 180.59, P < .001, ηp

2 = 0.42), and an interac-
tion between group and trial sequence (F(6,733.40) = 4.14, 
P < .001, ηp

2 = 0.03). PwP were slower on BX and BY 
trials compared to controls (tBX(343) = −4.46, P < .001, 
ηp

2 = 0.05; tBY(341) = −4.36, P < .001, ηp
2 = 0.05) and re-

latives (tBX(300) = 4.27, P < .001, ηp
2 = 0.06; tBY(299) = 4.37, 

P < .001, ηp
2 = 0.06). PwP were significantly slower on 

AY trials (t(341) = −3.69, P < .001, ηp
2 = 0.04) and AX 

trials (t(341) = −2.95, P = .009, ηp
2 = 0.02) than controls.

dʹ-context and PBI

One-way ANOVAs revealed group differences in dʹ-
context scores (F(2,231.46) = 8.73, P < .001, ηp

2 = 0.07) and 
PBI-RT (F(2,196.84) = 5.83, P = .003, ηp

2 = 0.06), and in PBI-
accuracy (F(2,144.93) = 3.21, P = .043, ηp

2 = 0.04). PwP dem-
onstrated lower dʹ-context scores and PBI-RT than both 
relatives (tdʹ-context(243) = −3.70, Pdʹ-context < .001, ηp

2 = 0.05; 
tPBI-RT(205) = −2.78, PPBI-RT = .02, ηp

2 = 0.04) and controls (tdʹ-

context(245) = 3.02, Pdʹ-context = .008, ηp
2 = 0.04; tPBI-RT(238) = 2.68, 

PPBI-RT = .02, ηp
2 = 0.03), suggesting less efficient context 

processing and less utilization of proactive control. The con-
trol and relative groups did not differ from each other on dʹ-
context scores or PBI-RT (tdʹ-context(2187) = −0.31, Pdʹ-context = .95, 
ηp

2 < 0.01; tPBI-RT(230) = 0.21, PPBI-RT = .98, ηp
2 < 0.01). The 

post hoc group comparisons for PBI accuracy did not sur-
vive multiple comparison corrections (|t|s < 2.01, Ps > .09).

DDM Parameters

The group RT distributions indicated that the participant’s 
RT were poorly described by their mean RT, and sug-
gested that there were significant group differences in the 
underlying evidence accumulation process (figure 1D). 
Thus, we hierarchically fit DDMs to the participant be-
havior to get individual estimates of the drift rate (v), deci-
sion threshold (a), nondecision time (t), and the response 
bias (w) (figure 1B). We found that the maximally flexible 
model (figure 2A), which allowed a, t, and v parameters 
to vary by trial sequence and w by the cue type, was the 
best description of participant RT and responses (sup-
plementary table 1). All of the best models showed good 
convergence via Gelman-Rubin with R̂s < 1.031 on all in-
dividual parameters (supplementary table 2).

Drift Rate (v)

For the sake of  comparing across all trial sequences, we 
made the direction of  AX trial drift rates positive (the 
only target trial; figure 2B). A LMER model examining 
drift rate across group and trial sequences revealed main 
effects of  group (F(2,245) = 28.66, P < .001, ηp

2 = 0.19) 
and trial sequence (F(3,741) = 53.02, P < .001, ηp

2 = 0.18), 
as well as an interaction between group and trial se-
quence (F(6,741) = 5.67, P = .001, ηp

2 = 0.04). PwP showed 
lower rates of  evidence accumulation than controls 
(AX: t(708) = 3.55, P = .001, ηp

2 = 0.02; BX: t(708) = 6.45, 
P < .001, ηp

2 = 0.06; BY: t(708) = 5.73, P < .001, 
ηp

2 = 0.04) and relatives (AX: t(674) = −4.19, P < .001, 
ηp

2 = 0.03; BX: t(674) = −5.49, P < .001, ηp
2 = 0.04; BY: 

t(674) = −6.86, P < .001, ηp
2 = 0.07) across all trials, ex-

cept for AY trials where PwP showed comparable drift 
rates to relatives (t(674) = −2.20, P = .07, ηp

2 < 0.01) and 
controls (t(708) = 1.45, P = .32, ηp

2 < 0.01). This pattern 
of  findings indicates a specific deficit in evidence accu-
mulation when PwP can utilize proactive control, but not 
when they are utilizing reactive control. This difference 
is particularly exacerbated when the cue stimulus pro-
vides definitive evidence about the correct response (ie, 
B cue trials), rather than suggestive evidence (ie, A cue 
trials). Relatives did not significantly differ from con-
trols on drift rates across all trials (|t|s < 1.44, Ps > .32).

Decision Threshold (a)

There were interactions between group and trial 
sequences in decision thresholds (figure 2C). An LMER 
model of decision threshold revealed a main effect of 
trial sequence (F(3,741.00) = 92.71, P < .001, ηp

2 = 0.27) 
and an interaction between group and trial sequences 
(F(6,741.00) = 4.13, P < .001, ηp

2 = 0.03), but no main effect 
of group (F(2,177.20) = 1.96, P = .14, ηp

2 = 0.02). Relatives 
had a higher decision threshold than PwP on AX 
(t(415) = −2.44, P = .040, ηp

2 = 0.01) and BY (t(415) = −3.47, 
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Fig. 2.  (A) Diagram of the best fitting hierarchical drift diffusion model (DDM) to the distribution of participant responses across trials 
(~Xi,j). The best fitting hierarchical DDM permitted the rate of evidence accumulation, decision threshold, and nondecision time to vary 
by trial type (ie, 1 of each parameter for AX, AY, BX, and BY) and the bias to vary by the cue (ie, 1 parameter for A cues and 1 for B 
cues). µ and σ are the subgroup means and standard deviations of the parameters that are denoted in their subscripts. Each subgroup 
was independently fitted. (B) The means and standard errors of the drift rate parameter by group. The shaded section indicates that the 
sign of the parameter was negative (ie, toward a target response) prior to taking its absolute value. (C) The means and standard errors 
of the decision threshold by group. (D) The means and standard errors of the nondecision time threshold by group. (E) The means and 
standard errors of the degree of bias. The shaded section indicates that the sign of the calculated parameter was negative (ie, toward a 
target response) prior to taking its absolute value. The absolute value was taken after calculating the mean and standard errors.
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P = .02, ηp
2 = 0.03) trials. Relatives had a higher deci-

sion threshold than controls on BY trials (t(441) = −2.95, 
P = .009, ηp

2 = 0.02).

Nondecision Time (t)

There were interesting group differences in the 
nondecision time (figure 2D). An LMER model re-
vealed a main effect of  trial sequence (F(3,741.00) = 397.67, 
P < .001, ηp

2 = 0.62), a main effect of  group 
(F(2,245) = 15.34, P < .001, ηp

2 = 0.11), and an interac-
tion between group and trial sequence (F(6,741) = 3.97, 
P < .001, ηp

2 = 0.03). The groups did not differ signifi-
cantly on AX trials in their nondecision times (|t|s < 2.29, 
Ps > .058). However, PwP showed longer nondecision 
times than controls on AY (t(611) = −6.16, P < .001, 
ηp

2 = 0.06), BX (t(611) = −3.33, P = .003, ηp
2 = 0.02), and 

BY (t(611) = −3.22, P = .004, ηp
2 = 0.02) trials. This ef-

fect was most pronounced on AY trials, which require 
reactive control. The longer nondecision times on trials 
with a B cue suggests that there may be less proactive 
response planning when there is definitive evidence on 
the correct response compared to control participants. 
Relatives showed longer nondecision times than con-
trol participants on AY trials (t(543) = −3.14, P = .005, 
ηp

2 = 0.02). Relatives also showed shorter nondecision 
time on AY (t(580) = 3.07, P = .006, ηp

2 = 0.02), BX 
(t(580) = 3.13, P = .005, ηp

2 = 0.02) and BY (t(580) = 4.59, 
P < .001, ηp

2 = 0.02) trials than PwP.

Degree of Bias (w)

To better equate differences in bias we adjusted the value 
such that it was an estimate of the deviation from indif-
ference (ie, 0.5) (figure 2E). An LMER model on degree 
of bias revealed a main effect of group (F(2,214.52) = 4.31, 
P = .01, ηp

2 = 0.04), no main effect of the cue (F(1,247) = 1.52, 
P = .22, ηp

2 < 0.01), and no interaction between group and 
trial sequence (F(2,247) = 1.19, P = .31, ηp

2 = 0.01). Post hoc 
pairwise comparisons showed that PwP showed a lower 
degree of bias than their relatives (t(223) = −2.87, P = .01, 
ηp

2 = 0.04). PwP did not differ from controls on degree of 
bias (t(242) = 1.30, P = .39, ηp

2 < 0.01).

Classification Models to Determine Utility

Controls vs PwP.  An XGBoost model classifying PwP 
from control participants had high discriminative per-
formance, indicated by a cross-validated area under 
the curve (AUC) of  0.89. The SHAP explanation of 
this model (figure 3A) found that the most important 
variable in this model was BY drift rates, where lower 
drift rate on BY trials predicted a higher likelihood of 
being classified as a member of  the PwP group. Other 
variables that were especially important to categorizing 
participants were v-BX, where lower drift rate on BX 

trials predicted higher likelihood of  being labeled PwP, 
w-B, where increased bias predicted a higher likelihood 
of  being classified as a member of  the PwP group, a-
BY, where decreased BY decision thresholds predicted 
greater likelihood of  being labeled PwP, and t-AY, where 
longer AY nondecision times predicted greater likeli-
hood of  being labeled PwP.

A comparison model attempting to classify PwP from 
controls using conventional measures from the DPX pro-
duced a cross-validated AUC of 0.69, indicating worse 
performance than the DDM-parameter-based classifica-
tion (figure 3E). The majority of the parameters that had 
the most utility in differentiating PwP from controls were 
RT indices (AX, AY, and BX trial RT and PBI-RT), with 
the exception of AX trial accuracy which also showed 
utility. Given its ubiquity in the literature, it was sur-
prising that dʹ-context was only the seventh most impor-
tant parameter for differentiating between controls and 
PwP. Overall, this comparison supports the utility of RT 
and the DDM.

Relatives vs PwP.  An XGBoost model classifying 
PwP from their first-degree relatives produced a cross-
validated AUC of 0.90, indicating high discrimination 
performance. The SHAP analysis (figure 3B) found that 
the most important variable in this model was the drift 
rate on BY trials where slower drift rates predicted a 
greater likelihood of PwP membership. Other important 
variables included a-BY, where decreased BY thresh-
olds predicted greater likelihood of being labeled PwP, 
v-BX, where lower drift rate predicted greater likelihood 
of being labeled PwP, w-A, where decreased A-cue bias 
predicted higher likelihoods of being labeled PwP, and 
t-AY, where longer AY nondecision time predicted higher 
likelihood of being labeled PwP. A comparison model at-
tempting to classify PwP from their first-degree relatives 
using conventional measures from the DPX produced 
a cross-validated AUC of 0.69, indicating a substantial 
decrease in performance by comparison to the DDM 
parameters.

Controls vs Relatives.  An XGBoost model classifying 
controls from relatives produced a cross-validated AUC 
of 0.85, indicating high discrimination performance. The 
SHAP analysis (figure 3C) found that the most impor-
tant variable in this model was a-BY, where increased BY 
thresholds predicted higher likelihood of relative mem-
bership. Other important variables included w-B, where 
increased B-cue bias predicted higher likelihoods of being 
labeled relatives, t-AY, where longer AY nondecision time 
predicted higher likelihood of being labeled relatives, 
a-BX, where increased BX thresholds predicted higher 
likelihood of being labeled relatives, and w-A, where de-
creased A-cue bias predicted higher likelihoods of being 
labeled relatives. A comparison model attempting to clas-
sify relatives from control using traditional behavioral 
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Fig. 3.  (A–C) SHAP explanations of XGBoost model classifications. Each dot represents a single participant. Dots are arranged along 
the X-axis according to the impact each variable had on the model classification for each individual with the black line in the center 
indicating zero value. Dots to the left of the zero line indicate that the variable predicted membership in the class label to the left, and 
dots to the right similarly indicate that the variable predicted membership in the class label to the right. Parameters are listed in the order 
of classification importance. (D) Summary of how important each parameter was for differentiation between the groups. (E) SHAP 
explanation of XGBoost model classification using typical DPX parameters. (F) Correlations of the DDM parameters with conventional 
indices.
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indices from the DPX produced a cross-validated AUC 
of 0.62, indicating a substantial decrease in performance 
by comparison to the DDM parameters.

Summary of Comparisons

While the exact ordering of the most useful to least 
useful parameters found by the SHAP analysis for 
differentiating between groups varied, there were some 
commonalities across them (figure 3D). The most useful 
parameters for categorizing group membership were the 
decision threshold and drift rate on BX and BY trials, the 
nondecision time on AY trials, and the bias on trials with 
B cues.

Relationship of DDM Parameters With Conventional 
Indices

When examining the correlations between conventional 
DPX measures and DDM parameters, we found that they 
were highly associated with each other (figure 3F). dʹ-
context was positively correlated with drift rate (Kendall’s 
τvAX = 0.39, Padj < .001; τvAY = 0.23, Padj < .001; τvBX = 0.57, 
Padj < .001; τvBY = 0.38, Padj < .001) and degree of bias 
(τzA = 0.13, Padj = .047; τzB = 0.21, Padj = .002). It was also 
positively correlated with decision threshold in AX and 
BX trials (τaAX = 0.17, Padj = .01; τaBX = 0.17, Padj = .01), 
and negatively correlated with nondecision time in BX 
(τtBX = −0.18, Padj = .007) and BY trials (τtBY = −0.14, 
Padj = .046). PBI-RT was significantly correlated with 
drift rate, nondecision time, bias, and decision threshold 
parameters extracted from trials with B cues which assess 
proactive control (τaBX = −0.22, Padj < .001; τaBY = −0.28, 
Padj < .001; τvBX = 0.46, Padj < .001; τvBY = 0.26, Padj < .001; 
τtBX = −0.28, Padj < .001; τtBY = −0.29, Padj < .001; 
τzB = −0.44, Padj < .001). PBI-RT was also negatively cor-
related with nondecision time in AY trials (τtAY = −0.17, 
Padj = .01).

Relationships With Clinical Symptoms and Community 
Functioning

We examined clinical symptomatology for associations 
with DDM parameters selected as informative (ie, w-B, 
w-A, v-BX, v-BY, t-AY, and a-BY). Across all partici-
pants, greater negative symptomatology was associated 
with longer nondecision time on AY trials (β = 0.27, Padj 
= .004). No other symptom factors were associated with 
the selected DDM parameters. For conventional indices, 
dʹ-context, but not PBI-RT, was associated with disor-
ganization symptoms (β = −0.16, Padj = .02).

We also examined schizotypal traits for associations 
with DDM parameters as possible indicators of genetic 
liability for psychosis. Greater difficulties with social-
interpersonal functioning were associated with longer 
nondecision time on AY trials (β = 0.27, Padj = .001), 
slower drift rates on BX trials (β = −0.31, Padj = .001) and 

lower decision boundary on BY trials (β = −0.18, Padj = 
.04). More anomalous cognitive-perceptual functioning 
was also associated with longer nondecision time on AY 
trials (β = 0.23, Padj = .01) and slower drift rates on BX 
trials (β = −0.23, Padj = .02). Greater difficulties with so-
cial interpersonal functioning were associated with lower 
dʹ-context scores (β = −0.19, Padj = .009). Greater difficul-
ties with cognitive-perceptual functioning were also asso-
ciated with lower dʹ-context scores (β = −0.14, Padj = .03), 
as well as lower PBI-RT (β = −0.19, Padj = .007).

To better understand how well laboratory-based as-
sessment of  cognitive control predicted real-world 
functioning we investigated whether DDM parameters 
were associated with measures of  social and role func-
tioning. Higher social functioning was predicted by 
faster drift rates on BX trials (β = 0.27, Padj = .004), 
shorter nondecision time on AY trials (β = −0.25, Padj = 
.004), and higher thresholds on BY trials (β = 0.23, Padj 
= .004). Higher role functioning was predicted by faster 
drift rates on BY trials (β = 0.25, Padj = .007) and shorter 
nondecision times on AY trials (β = −0.26, Padj = .003). 
Our examination of  conventional cognitive control in-
dices revealed that higher global social functioning was 
associated with higher dʹ-context scores (β = 0.18, Padj = 
.006) and higher PBI-RT (β = −0.23, Padj = .02). Higher 
global role functioning was associated with higher dʹ-
context scores (β = 0.28, Padj < .001). Within PwP asso-
ciation results were included in supplementary results.

Discussion

We applied hierarchical DDMs to behavior on the DPX 
task and found that it provided novel insights into cog-
nitive control deficits in psychotic psychopathology. The 
DDM revealed that cognitive control deficits in psychosis 
are mainly due to two differences in the underlying deci-
sion process. First, slower drift rates across AX, BX, and 
BY trials suggest a deficit in accumulating evidence to re-
spond when the cue stimulus is informative. This is fur-
ther emphasized by the absence of a similar deficit on AY 
trials, which are typically responded to correctly and effi-
ciently by refraining from a prepotent response. Second, 
we observed longer nondecision times for PwP during 
all but AX trials. The slowed nondecision time on pro-
active control trials (ie, BX and BY trials) suggests that 
PwP take longer to represent the probe stimulus or access 
working memory of the B cues. It is important to note 
that the nondecision time parameters estimated by DDM 
may not map directly onto sensory and motor delays.52 
On the reactive AY trials, the DDM identified protracted 
nondecision time and intact rate of evidence accumula-
tion in PwP. Poorer proactive control in individuals with 
psychosis would theoretically improve performance on 
AY trials due to lower prepotency to override. It could 
be that we do not observe any difference in error rates on 
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AY trials but observe longer response times, because a 
deficit in evidence accumulation on AY trials is obscured 
by less response anticipation for the target response on A 
cue trials. This is partially supported by the tendency to-
ward lower A bias in PwP (figure 2E).

While we hypothesized a reduced bias in PwP due to 
previously observed deficits in proactive control and sim-
ulation of the underlying process,27 findings were mixed. 
PwP showed lower bias than their relatives after control-
ling for age and sex differences, but their bias was not sig-
nificantly different from controls. It could be that we failed 
to detect an overall difference in degree of bias due to 
the heterogeneity of our PwP sample which included pa-
tients with bipolar disorder. Evidence for this comes from 
the XGBoost classification which revealed that increased 
B-cue bias differentiated PwP from controls, but only for a 
subset of participants (figure 3A). Additionally, XGBoost 
classification highlighted the possibility that degree of bias 
on B trials is reflective of genetic liability, given that it is 
similarly important for differentiating relatives from con-
trols. Drift rates, on the other hand, for BX and BY trials 
may reflect the actual occurrence of the disease, as these 
indices played an important role in separating PwP from 
relatives and controls, but not relatives from controls.

To our knowledge, this is the first study to investigate 
cognitive control in psychotic psychopathology using 
full-parameter DDMs. DDM findings of  decreased drift 
rates and longer nondecision time in PwP are consistent 
with previous findings on sustained attention, coding, 
punishment, and reward anticipation tasks.20,21,23,24 The 
current results suggest that the typically observed inef-
ficiencies in information processing extend to cognitive 
control, especially on those trials where responses could 
be proactively planned. The DDM was also able to 
identify atypical response patterns in relatives that went 
undetected with conventional measures. In general, 
conventional indices of  cognitive control on the DPX 
were less useful for differentiating between groups than 
we expected and had interesting relationships with the 
DDM parameters. dʹ-context was most correlated with 
DDM parameters on BX trials, but there were also sig-
nificant correlations with the  drift rate on trials with 
other trial sequences. Since  the drift rate parameter 
captures error rates more than the other parameters, 
this suggests that dʹ-context is measuring general error 
rates and may be less specific to contextual processing. 
PBI-RT was more informative for differentiating be-
tween groups than dʹ-context. Given its basis in RT, 
PBI-RT captured the nondecision time differences and 
was primarily related to DDM parameters of  B cue 
trials, consistent with a measure of  proactive control. 
Nevertheless, conventional indices seem to lack an 
index that specifically taps into the nondecision time on 
AY trials which showed utility in the group member-
ship classification.

In investigating the clinical relevance of  the most 
fruitful DDM and conventional parameters, we identi-
fied associations between DDM parameters and genetic 
liability for psychotic psychopathology as reflected in 
schizotypal traits. Consistent with past literature,53 pro-
active control was associated with schizotypal traits as 
assessed by questionnaire (SPQ). Interpersonal-social 
difficulties and cognitive-perceptual anomalies were 
related to slowed evidence accumulation on proactive 
control (BX) trials. Similar associations with protracted 
nondecision times for reactive control (AY) trials sug-
gest that both cognitive and sensory processes are 
manifestations of  genetic liability for psychosis. This 
also suggests that genetic liability of  psychotic psycho-
pathology is associated with aspects of  reactive con-
trol. Conventional measures (dʹ-context and PBI-RT) 
showed associations with schizotypal traits consistent 
with them capturing proactive control tied to genetic 
liability. Additionally, we found worse real-world func-
tioning to be related to protracted nondecision times on 
reactive control trials and slowed evidence accumula-
tion on proactive control trials. Conventional measures 
of  dʹ-context and PBI-RT showed similar relationships 
with measures of  real-world functioning. The clinical 
implication is that the modeling of  DPX could be par-
ticularly useful in capturing the slowed decision-making 
that impairs cognitive control and functioning outside 
research settings, even in individuals who do not mani-
fest a clinical disorder.

Relation of the DDM Model to Attractor Network and 
State Processes, Implications for Psychosis

Models of psychosis suggest that symptoms arise from 
representations of information becoming “noisy.”27,28,54,55 
This hypothetical mechanism can be understood via at-
tractor state dynamics, to which DDMs have been found 
to be mathematically similar.56–59 Attractor state models 
can be envisioned as an energy landscape (figure 4A) with 
the final pattern as the low-energy state (a valley, called the 
“basin of attraction”). The non-decision-time parameter 
in the DDM maps onto (figure 4B) the period of time be-
fore neural activity starts to systematically move toward a 
specific basin of attraction. The rate of evidence accumu-
lation is how quickly the neural activity moves toward the 
basin of attraction once the decision process is initiated. 
The decision threshold parameter is the gap between the 
basins of attraction, and the bias parameter is when the 
starting point favors 1 basin over another. Importantly, 
the depths of these basins depend on the strength of the 
synaptic interconnections between the neurons within the 
pattern.27,57,60–63 Psychoses may arise from a flattening of 
the basin, so that the patterns do not as easily fall into the 
right option.27,28,54,55 In the DDM mathematics, this shows 
up as a decrease in the drift rate (v) with lower drift rates 
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implying shallower basins (figure 4C). As shown in figure 
2, the largest difference between PwP and both relatives 
and controls is the drift rate, with PwP having a signifi-
cantly lower drift rate consistent with shallower basins of 
attraction and less stable neural states. Additionally, PwP 
show longer nondecision times (t), implying that it takes 
longer for them to start moving toward an attractor basin. 
The fact that decision threshold (a) is mostly unaffected 
suggests that the downstream systems are able to interpret 
the neural patterns correctly—once that pattern arrives.

Limitations

One limitation of this study is that we had to use hierar-
chical DDMs to estimate individual parameters, which 
uses information from the group level to influence param-
eters at the participant level. This approach could have 
caused our XGBoost method and association studies to 
overestimate the area under the curve and the strengths of 
the associations compared to other grouping approaches. 
Attempting to fit all participants as a single group is also 
problematic, however, because it would obscure group 
differences by assuming a homogeneity across groups. 
It would be beneficial to conduct an experiment with an 
order of magnitude more trials to estimate the param-
eters of individual subjects without the influence of other 
participants. Within this current study, it is best to in-
terpret the XGBoost and SHAP results as the order of 
the most useful parameters for categorization and to be 
somewhat cautious of the AUC estimates.

Overall, our results provide unique and useful informa-
tion about underlying cognitive control mechanisms that 
are not captured by conventional measures. By analyzing 
accuracy and RT from a DDM perspective, we learned 
that slowed motor/perceptual time as well as inefficien-
cies in proactive evidence accumulation likely contribute 
to deficits in cognitive control in psychosis. DDM also 

revealed atypical trial-level patterns in relatives that went 
undetected through conventional analyses. Our findings 
also provide additional support for a deficit in proac-
tive control in psychotic psychopathology, and further 
highlight the importance of perceptual and motor func-
tions in understanding compromised cognitive control in 
people with a history of psychosis.

Supplementary Material

Supplementary material is available at https://academic.
oup.com/schizophreniabulletin.
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