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Abstract
Independent components analysis (ICA) is an effective and ubiquitous tool for 
cleaning EEG. To reduce computation time, many analysis pipelines decrease 
EEG dimensionality prior to ICA. A 2018 report by Artoni and colleagues de-
tailed the deleterious effects of such reduced-dimensionality ICA (rdICA) on the 
dipolarity and reliability of independent components. Though valuable for re-
searchers interested in directly analyzing independent components, ICA is more 
commonly used for cleaning EEG. Thus, a direct examination of the impact of 
artifact removal via rdICA on EEG data quality is needed. We conducted a reg-
istered analysis of 128 electrode recordings of 43 healthy subjects performing an 
active auditory oddball task. We preprocessed each subject's data under the fol-
lowing conditions: (1) ICA without dimension reduction, (2) ICA with only 64 
electrodes included, (3) ICA preceded by PCA retaining 99% of the original data 
variance and (4) ICA preceded by PCA retaining 90% variance. We then quanti-
fied ERP data quality by measuring mean-amplitude, standardized measurement 
error (SME) of the single-trial mean-amplitudes, and split-half reliability of the 
N1 and P3 components. We then attempted to replicate our findings in an inde-
pendent validation dataset. We observed statistically and practically significant 
changes in the mean amplitude of early sensory components for the 90% con-
dition. Unexpectedly, the SME was only larger for the 64 electrode condition. 
Also unexpectedly, the effect of rdICA on split-half reliability was inconsistent 
between datasets. Based on the observed data, we argue that PCA-based rdICA is 
justifiable when used cautiously.
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1   |   INTRODUCTION

Independent components analysis (ICA) is a widely used 
and highly effective tool for cleaning electrophysiological 
recordings. A practical and theoretical limitation of ICA, 
in the context of electroencephalogram (EEG), is the prop-
erty that the number of independent components (ICs) 
contained within the EEG is equal to the number of chan-
nels used for recording, which may or may not be equal 
to the true number of underlying signal sources. For this 
reason, it is common practice to reduce the dimensional-
ity of high-density EEG data prior to ICA. A recent report 
(Artoni et al., 2018) detailed the deleterious effects of such 
dimension reduction on the dipolarity and reliability of 
resultant independent components (ICs). Though this 
report was valuable for researchers interested in directly 
analyzing brain ICs, many EEG researchers primarily use 
ICA to isolate and remove a small number of non-neural 
artifact components before quantifying neural responses 
of interest. Thus, there is a need for direct examination of 
the impact of reduced-dimensionality ICA (rdICA) arti-
fact removal on EEG data quality.

To address this gap, we examined the impact of rdICA 
on the commonly studied N1 and P3 ERP components 
elicited during an active auditory oddball task. Oddball 
tasks consist of a series of intermixed infrequent target 
stimuli and frequent non-target stimuli. For active odd-
ball tasks, participants are asked to make behavioral re-
sponses to differentiate targets and non-targets; however, 
oddball categorization-related neural responses are ob-
served even in the absence of behavioral responses (Justen 
& Herbert,  2018). The auditory N1 or N100 component 
features a negative peak around 100 ms that is maximal 
at frontocentral electrode sites and is thought to reflect 
early sensory processing (Näätänen & Picton,  1987). It 
is weakly sensitive to oddballs, but highly sensitive to 
physical characteristics of a given stimulus including 
pitch and duration. It is also modulated by selective at-
tention (Hillyard et al., 1973) and level of arousal (Nash & 
Williams, 1982). The later auditory P300 features a broad 
positive time course that peaks between 250 and 500 ms 
and is potentiated by oddballs (Picton, 1992). Unlike the 
N1 component, the P300 is less sensitive to physical char-
acteristics of the stimuli and is therefore thought to reflect 
higher-level stimulus-categorization processes (Katayama 
& Polich, 1996). Previous work has estimated the internal 
consistency (as measured by Cronbach's alpha) of the N1 
mean amplitude for standard and target stimuli as 0.94 
and 0.86 respectively, and the P3 mean amplitude for tar-
get stimuli as 0.83 (Debener et al., 2002).

We chose the N1 and P300 as the primary compo-
nents of interest because they are ubiquitously studied. 
Similarly, we chose to examine these components in the 

context of an active oddball task because it is a founda-
tional and popular ERP paradigm. Moreover, it is not 
known whether early sensory components and late cog-
nitive components are differentially affected by rdICA. To 
test whether our findings generalize to other EEG systems, 
task paradigms and ERP components, a validation analy-
sis of an independent dataset was conducted in which we 
characterized the effect of rdICA on the visual P1 and N2 
components elicited during a degraded stimulus continu-
ous performance task (DSCPT) recorded using a different 
EEG recording system.

The current report focuses on two dimension reduc-
tion techniques: principal components analysis (PCA) 
and electrode subsetting, the latter of which approximates 
collecting lower-density EEG data (e.g., 64 or 32 channel 
montages). Other methods of dimension reduction tech-
niques such as factor analytic and machine learning ap-
proaches exist (Tăuţan et al., 2021); however, these are not 
commonly used prior to ICA and thus were not investi-
gated in the present manuscript.

Similar to ICA, PCA is ubiquitous across many fields; 
however, whereas ICA extracts maximally independent 
components, PCA identifies a sequence of orthogonal 
vectors that maximally account for variance in the ob-
served data. Also similar to ICA, PCA will return as many 
components as there are dimensions in the data; how-
ever, it is common to set a threshold past which princi-
pal components are excluded. Methods for determining 
this threshold are vast, but for simplicity and alignment 
with Artoni et al.'s work, we focus on the percent variance 
thresholding procedure in which the percentage of vari-
ance accounted for by each PC is sequentially summed to-
gether (beginning with the PC that accounts for the most 
variance) until a threshold is reached (e.g., 90%). Once 
this threshold is met, all PCs that were not included in the 
summation are excluded.

Perhaps the simplest approach to dimension reduction 
of EEG is to submit a smaller subset of electrodes to ICA. 
We examine this approach because it is more computa-
tionally efficient than PCA: The time complexity of index-
ing an array is O(1), while the time complexity of creating 
a covariance/correlation matrix and then extracting or-
thogonal eigenvectors is O(min(p^3, n^3)) where p is the 
number of variables and n is the number of cases or ob-
servations (Johnstone & Lu, 2004). Subsetting electrodes 
prior to ICA is not only more computationally and con-
ceptually parsimonious than PCA mediated rdICA, but 
may be a useful technique for assessing whether higher 
density electrode montages lead to better ICA-based ar-
tifact removal. Given the considerable debate within the 
EEG and ERP communities with respect to whether the 
costs of collecting high density recordings (e.g., longer re-
cording preparation time, increased likelihood of bridging 
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electrodes) outweigh the putative benefits (e.g., higher 
signal to noise, better interpolation accuracy, better spa-
tial resolution), characterizing how the quality of ICA ar-
tifact removal is impacted by the electrode density may be 
valuable.

To quantify the impact of rdICA, we examined subject-
level mean amplitude, standardized measurement error, 
and split-half reliability. Mean amplitude is frequently 
used to quantify the magnitude of components because 
it is an unbiased point estimate that is robust to non-
time-locked noise and unbalanced trial designs (Clayson 
et al.,  2013). Thus we expected that subject-level mean 
amplitude measurements would not be meaningfully 
compromised by non-time-locked noise that might be 
added by rdICA. However, even if rdICA did not mean-
ingfully impact mean amplitude, it might lead to different 
levels of single-trial noise in the ERP. To explicitly assess 
such single-trial level noise for a given time-window mean 
amplitude, we used the recently proposed standardized 
measurement error (SME; Luck et al.,  2020). SME of a 
time-window mean-amplitude is computed by taking the 
mean amplitude of each trial, calculating the standard 
deviation of those single-trial mean amplitudes, and di-
viding by the square root of the number of trials. Thus if 
there is greater noise in the single-trial mean amplitude 
measurements (i.e., a larger standard deviation), the SME 
will be larger, indicating lower precision in single-trial 
mean amplitudes. Finally, much ERP research seeks to 
examine the relationship of brain potentials with individ-
ual differences (Dong et al., 2015; Marquardt et al., 2021), 
which requires reliable ERP measures (though see: Hedge 
et al., 2018). As discussed in Luck et al.  (2020), classical 
reliability is sensitive to the degree of heterogeneity in 
a given sample such that greater heterogeneity leads to 
greater reliability estimates even when the precision of the 
measurement (e.g., SME) is held constant. As such, we as-
sessed whether rdICA meaningfully impacts the split-half 
reliability of ERP component amplitudes.

Given the robustness of mean amplitude to single-trial 
level noise, we hypothesized that reducing dimensionality 
of 128 channel EEG data via channel subsetting or PCA 
prior to ICA would create negligible differences in subject-
level mean amplitudes compared to full dimensionality 
ICA. We did, however, expect to see different levels of 
noise in the single-trial mean amplitude measurements, 
as measured via SME, with higher SME corresponding to 
electrode subsetting. Furthermore, we hypothesized that 
rdICA (via PCA, but not via channel subsetting) would 
result in negligible changes in the reliability of ERP am-
plitudes compared to fdICA, which would provide evi-
dence in favor of the use of dimensionality reduction in 
individual differences research. By testing these hypoth-
eses, we hoped to provide guidance for best practice with 

respect to removal of non-neural artifacts from high-
dimensional ERP data. Ultimately, we hoped to show that 
the exorbitant computational costs of full dimensionality 
ICA (which may become a significant bottleneck in the 
scalability of preprocessing pipelines for large, multisite 
datasets) can be avoided by judicious use of dimension re-
duction techniques.

2   |   METHODS

2.1  |  Participants

Forty-three participants for the main analysis and 29 
participants for the validation analysis were recruited 
as healthy controls as part of family studies of psychosis 
through the Minneapolis VA Medical Center, community 
mental health programs, and fliers posted throughout 
the community. Previous publications have reported on 
these samples to characterize atypical neural responses 
and self-report measures in patients with schizophre-
nia, bipolar disorder and first-degree biological relatives 
of patients with schizophrenia or bipolar disorder (Kang 
et al.,  2019; Klein et al.,  2020; Longenecker et al.,  2020; 
Lynn et al., 2016; Olman et al., 2019; Pokorny et al., 2019, 
2020; Schallmo et al.,  2013; Van Voorhis et al.,  2019). 
Exclusion criteria for healthy controls included intellec-
tual disability (IQ <70), drug or alcohol dependence in 
past 6  months, current or past central nervous system 
condition, epilepsy, history of electroconvulsive therapy, 
history of head injury with skull fracture or loss of con-
sciousness longer than 30 minutes, age under 18 or over 
60, a history of psychotic disorder, current or past depres-
sive or manic episodes, or family history of depression, 
mania, or psychotic disorder.

2.2  |  Active auditory oddball task

The primary task of interest was an active directed-
attention auditory oddball task administered using 
Neurobehavioral Systems' Presentation software on a Dell 
Computer running Windows XP. Tones were presented 
for 100 ms, with a 10 ms rise/fall time and a jittered in-
tertrial interval of 1200–1500 ms. Participants completed a 
total of 800 trials over four blocks. In the first block, par-
ticipants attended to the left ear and right-clicked a mouse 
upon hearing a high tone in their left ear. This high tar-
get tone had a pitch of 2400 Hz and was presented infre-
quently (10% of all trials). The low tone in the attended ear 
had a frequency of 1600 Hz and was presented frequently 
(40% of all trials). In the unattended ear, an infrequent 
tone (1200 Hz; 10% of all trials) and frequent tone (800 Hz; 
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40% of all trials) were presented. In the second block, the 
stimuli presentation was identical, but participants were 
instructed to attend to the right ear. Laterality of tones 
was reversed for blocks three and four (e.g., the tones pre-
sented to the right ear for the first two blocks were pre-
sented to the left ear for blocks three and four). Further 
information regarding the task can be found in a previous 
publication from our group (Force et al., 2008).

2.3  |  EEG collection and processing

EEG data for the main analysis were collected using a 
BioSemi ActiveTwo system with a differential amplifier 
and a high-density 128 electrode montage and 10 auxiliary 
electrodes: two horizontal electrooculogram electrodes 
placed near the outer canthus of both eyes, two vertical 
electrooculogram electrodes placed above and below the 
right eye, two electrocardiogram electrodes placed on the 
left and right arms, two ear electrodes placed on the left 
and right ear lobe and two electromyogram electrodes 
placed on the left and right abductor pollicis brevis muscle 
just below the thumb. During acquisition, reference-free 
EEG were sampled at 1024 Hz with common mode sense 
(CMS) and driven right leg (DRL) ground electrodes.

Preprocessing was performed in EEGLAB v2021.1 
(Delorme & Makeig,  2004). Data were referenced to av-
erage earlobe signal, high-pass filtered at 0.1  Hz using 
a 2nd order Butterworth (Tanner et al.,  2015) and then 
resampled to 250 Hz (the MATLAB resample function 
implements a low-pass filter to prevent aliasing of fre-
quencies above the Nyquist frequency during downsam-
pling). Noisy time segments were automatically rejected 
using the eeglab pop_rejcont function with default values 
(frequency range = 20–40 Hz, epoch length = 0.5 s, upper 
threshold = 10db, epoch overlap = 0.25 s). Bad electrodes 
were automatically detected and rejected using pop_
clean_rawdata with the following default parameters: 
FlatlineCriterion: 5, Channel Criterion: 0.8, Line Noise 
Criterion: 4 (note: ASR and additional removal of bad elec-
trodes were turned off for efficiency because bad epochs 
should have been already detected with pop_rejcont).

Continuous EEG data were then submitted to four 
parallel ICA decompositions: (1) ICA without dimension 
reduction, (2) ICA with only odd numbered electrodes in-
cluded (BioSemi electrodes are numbered A1-32, B1-32, 
C1-32 and D1-32 for a total of 128 electrodes; so we only 
included odd-numbered electrodes such as A1, A3, A5, 
A7, … D31 which provided full coverage of the scalp and 
approximated a 64 electrode montage), (3) ICA preceded 
by PCA retaining 99% of the original data variance and 
(4) ICA preceded by PCA retaining 90% of the variance. 
ICA was performed via the pop_runica function using the 

default infomax algorithm with the recommended ‘ex-
tended’ option enabled. We used the covariance-matrix 
based orthogonally-rotated PCA built into the function. 
The IClabel plug-in was used with default parameters to 
automatically identify ocular, muscular, cardiac channel 
noise and line-noise artifacts (Pion-Tonachini et al., 2019). 
Artifacts classified as ocular, muscular, cardiac, channel 
noise or line-noise with 80% or greater level of confidence 
were automatically rejected (Pernet et al.,  2020). After 
ICA, removed channels were interpolated via the spher-
ical spline approach.

Denoised data were epoched from −300 to 900 ms rela-
tive to stimulus onset and re-referenced to the average scalp 
electrode signal. The active directed-attention oddball task 
manipulates selective attention, stimulus rarity and rela-
tive pitch, but for simplicity we averaged across attention 
and pitch manipulations to focus on the more common 
oddball comparison of frequent vs. rare stimuli. Average 
ERPs were baseline corrected using the average value from 
−150 to 0 ms. Subjects were excluded if they had less than 
25 (out of 160 total) usable infrequent trials. N1 compo-
nents were defined a priori at the following frontocentral 
sites (F1, FZ, F2, FC1, FCz, FC2 & Cz) and P3 was defined 
at parieto-occipital sites (P1, Pz, P2, PO3, PO4 & POz). A 
priori time windows for mean amplitude extraction of 
the N1 were 50–150 ms (Näätänen & Picton, 1987) and P3 
component was 250-500 ms (Comerchero & Polich, 1999; 
Polich, 2007; Simons et al.,  2011). We visually inspected 
the grand-grand-average waveforms (averaged across par-
ticipants and conditions) to determine whether these a 
priori time-windows provided reasonable coverage of the 
N1 and P3 component in our sample while avoiding bias-
ing our results toward a particular within-subjects effect 
(i.e., to avoid double-dipping, Luck & Gaspelin, 2017).

2.4  |  Planned statistical analyses

Six dependent variables were used to measure the im-
pact of rdICA on ERP data quality in the main analysis: 
sensory N1 mean amplitude (averaged across frequent 
and rare conditions), frequent-rare P3 mean amplitude, 
standardized measurement error (SME) of the sensory N1 
and frequent-rare P3 mean amplitudes, and split-half reli-
ability of the sensory N1 and frequent-rare P3 mean am-
plitudes. For mean amplitude and SME measures, three 
one-tailed dependent samples t-tests were computed to 
compare: (1) full dimensionality ICA (fdICA) vs. 64 elec-
trode ICA, (2) fdICA vs. 99% variance PCA before ICA and 
(3) fdICA vs. 90% variance PCA before ICA. To control for 
type-1 error rate, an initial alpha of 0.05 was Bonferroni 
corrected to 0.017 (0.05/3 = 0.017). Given the alpha and 
sample size, our statistical tests were able to detect a 
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medium Cohen's d effect size of 0.48 or greater with 80% 
probability (i.e., power = 0.8).

In addition to these frequentist tests, we computed 
Bayes factors to compare the strength of the evidence for 
the null and alternative hypotheses. The prior distribution 
of the null hypothesis was simply a t-distribution with N-1 
degrees of freedom and the alternative hypothesis was a 
positive half of a Cauchy distribution (i.e., a t-distribution 
with one degree of freedom). This approach is recom-
mended by (Rouder et al., 2009) and is the default for the 
BayesFactor R package which we used for computing the 
Bayes factors (Morey & Rouder, 2018).

Split half-reliability of the components were computed 
as the Pearson correlation between the average of even 
numbered trials and odd numbered trials across partic-
ipants. This reliability coefficient was then Spearman-
Brown corrected to account for the halving of the number 
of trials using the following formula:

In which �XX′ is the Spearman-Brown corrected reliability 
coefficient and �12 is the original split-half reliability coeffi-
cient. We then normalized �XX′ via Fisher's Z transformation:

and computed the 95% confidence interval with alpha set at 
0.05/3 as:

Thus a single reliability coefficient with corresponding 95% 
confidence intervals was estimated for each preprocessing 
condition.

Finally, to characterize whether rdICA might lead to a 
greater amount of mixed ICs which in turn leads to poorer 
ERP data quality, we calculated the percent variance ex-
plained by ICs that failed to be automatically classified 
as eye, brain, EKG, muscle, channel noise and line noise 
with 80% confidence for each participant for each pre-
processing condition (note: there is another IClabel cat-
egory named “other”, but this was not used to determine 
whether an IC was mixed or not). We then used the same 
within-subject t-test approach described above to test for 
significant differences between conditions. If significant 
differences were found between preprocessing condi-
tions in the amount of mixed ICs and amount of noise 
in the ERP components then we ran a mediation analy-
sis (using the mediation R package with non-parametric 
bootstrapped confidence intervals estimated via 10,000 

simulation iterations; Tingley et al., 2014) to test whether 
increases in mixed ICs explain the relationship between 
rdICA and decreased data quality.

2.5  |  Validation dataset

To test the generalizability of our findings, we conducted 
the same set of analyses on an independent dataset of 29 
healthy controls that completed a degraded stimulus con-
tinuous performance task (DS-CPT) with EEG recorded 
on a BrainVision 128 electrode ActiCHamp system (Klein 
et al., 2020; Sponheim et al., 2006). The DSCPT presents a 
series of numbers from 0 to 9 (stimulus duration = 29 ms 
and SOA = 1000 ms) and requires participants to press a 
button when the target number “0” appears. We inspected 
changes in mean amplitude, SME and split-half reliabil-
ity for the bilateral visual P1 and the target elicited N2. 
The P1 mean amplitude was measured with a time win-
dow of 80–130 ms at electrode sites PO7/PO8/P7/P8 av-
eraged across all conditions (Mangun,  1995; Sponheim 
et al., 2006). Visual N2 mean amplitude was measured via 
target-nontarget difference waveforms averaged across 
electrodes Cz, FCz, and Fz with a time-window of 320–
400 ms (see Klein et al., 2020) for more details regarding 
the dataset and paradigm.

3   |   RESULTS

3.1  |  Preprocessing results

After preprocessing, zero individuals in the main data-
set were excluded due to low trial counts (<25 trials in 
the rare/target condition) while three individuals in the 
validation dataset were excluded for this reason. Because 
time segment rejection was performed prior to ICA, the 
number of trials per subject per condition were exactly 
matched (mean rare trials for main dataset: 139.9, mean 
frequent trials for main dataset: 556.3, mean rare trials for 
validation dataset: 83.6, mean frequent trials for valida-
tion dataset: 371.7). For the 99% preprocessing condition 
in the main dataset, one individual had zero ICs left after 
automatic rejection and was thus excluded. For the 90% 
condition, 5 individuals were excluded for this reason. For 
the validation dataset, no individuals were excluded in 
this way.

3.2  |  Planned analyses: Mean amplitude

Based on visual inspection of the grand-grand average 
waveform, we adjusted the time-windows for the N1 

�XX� =
2�12
1 + �12

Z = 0.5ln

(

1 + �XX�

1 − �XX�

)

Z ±
2.39398
√

N − 3
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from 50–150 ms to 50–180 ms while the P1, N2 and P3 
time-windows were not adjusted (see Figure 1 for grand 
average topographies and waveforms of N1 and P3 com-
ponents; Figure S1 shows the corresponding plots for P1 
and N2). Figure 2 depicts the degree of change in N1 and 
P3 mean amplitude after preprocessing under the four 
conditions of interest. For the N1 component, we did not 
observe a significant change in mean amplitude for the 
full vs half and full vs. 99% comparisons. We did, how-
ever, see a significant increase in mean amplitude for the 
90% variance thresholded condition. Given that the N1 is 
a negative-going component, this increase in amplitude is 
reflective of the N1 amplitudes on average shifting closer 
to zero (i.e., greater noise in the denominator relative to 
the negative-going signal in the numerator). We observed 
the largest Bayes factor for this full vs. 90% comparison 
suggesting that the data strongly supported the alternative 
hypothesis (i.e., that there was a difference in mean ampli-
tude between preprocessing conditions). The P3 difference 
wave did not significantly differ for any of the three con-
dition comparisons we performed. Across components, 
four of the six Bayes factors were below 0.33 suggesting 
that the data were more supportive of the null hypothesis 

for these four comparisons (i.e., that there was no signifi-
cant difference between these preprocessing conditions). 
Interestingly, the Bayes factor for the full vs. half compari-
son of P3 amplitude was larger than 3 suggesting that the 
data were more consistent with the alternative hypothesis; 
however, the change in mean amplitude was not in the ex-
pected direction. In other words, the P3 amplitudes were 
larger in the reduced dimensionality condition which 
could be indicative of an increased signal to noise ratio 
because the P3-diff is a positive-going component.

3.3  |  Exploratory analysis of mean 
amplitude normality and outliers

Visual inspection of the mean amplitude distributions 
showed that the reduced dimensionality conditions (es-
pecially the 90% condition) led to differences in shape of 
the mean amplitude distribution and number of outliers 
despite the mean of each distribution being relatively 
stable. To assess whether rdICA led to more dramatic 
departures from normality, we conducted exploratory 
Anderson-Darling tests for each condition. The results of 

F I G U R E  1   Grand average waveforms and topographies by condition. The N1 component is averaged across all trials while the P3 is 
a difference wave of rare minus frequent trials. To mitigate the effect of outliers, a robust biweight approach was used for grand averaging 
(Hoaglin et al., 1983).
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this analysis, which can be found in Table S2, were con-
sistent with rdICA leading to deviations from normality 
for the P3 component with the 90% condition leading to 
the largest A statistic. The N1 mean amplitude distribu-
tions, on the other hand, did not significantly deviate from 
normality for any condition, after correction for multiple 
comparisons.

To assess for outliers, we used a Generalized Extreme 
Studentized Deviate procedure (Rosner,  1983) using 
the gesdTest() function from the PMCMRplus package 

(Pohlert, 2022). The results of this procedure (see Table S3) 
generally corroborated what is evident by visual inspec-
tion of Figure 2: PCA-based rdICA led to more outliers for 
the P3 component, but not for the N1.

3.4  |  Planned analyses: SME

Figure 3 depicts the same set of comparisons as Figure 2 
except with the standardized measurement error (SME) 

F I G U R E  2   Effect of reduced dimensionality ICA on N1 and P3 mean amplitudes. Gray dots represent each individual and gray lines 
connect each individual across conditions. Red lines represent the mean. BF is the Bayes factor in which the alternative hypothesis is in the 
numerator and the null hypothesis is in the denominator. Full: Full dimensionality ICA; half: Odd electrodes only submitted to ICA; 99%: 
ICA preceded by PCA retaining 99% of the variance; 90%: Same as 99% except retaining only 90% of the variance.
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of the single trial mean amplitudes as the dependent vari-
able. Only the half dimensionality ICA led to the expected 
increase in SME where as the 99% and 90% conditions led 
to an apparent decrease in SME (note: we could not test 
for significance of this decrease because we specified a pri-
ori one-tailed t-tests in the opposite direction). Bayes fac-
tors strongly supported the alternative hypothesis for the 
N1 SME in all condition comparisons; however, only the 
full vs. half difference was in the expected direction (i.e., 
reduced ICA led to higher SME). For the P3 component, 

Bayes factors for the full vs. 99% and full vs. 90% compari-
sons suggested that the data were most consistent with the 
null hypothesis: that P3 SME did not meaningfully change 
for the 99% or 90% conditions relative to full dimensionality.

3.5  |  Planned analyses: Reliability

Figure 4 depicts the raw and Spearman-Brown corrected 
split-half reliabilities of the N1 and P3 components. In 

F I G U R E  3   Effect of reduced dimensionality ICA on the standardized measurement error of N1 and P3. Standardized measurement 
error (SME) was calculated as the standard deviation of a given set of single-trial mean amplitudes divided by the square root of the number 
of trials. Larger SME values are interpreted as indicating more noise because a high SME value implies a large spread of single trial mean 
amplitudes when the number of trials are held constant. See Figure 2 for further figure description.
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general, N1 reliability was greater than the P3 differ-
ence wave reliability which is consistent with the known 
deleterious effect of subtraction scores on reliability. 
Surprisingly, the 90% condition led to the most reliable 
N1 and P3 components. For the P3 difference score, the 
reliability coefficients from the full, half and 99% condi-
tions fell outside of the 95% confidence interval of the 90% 
condition coefficient such that the reliability of the 90% 
condition was significantly higher than the other condi-
tions. However, as can be seen in the scatterplots, the 90% 
condition created more heterogeneity between subjects 
and generated outlying data points which may have spuri-
ously inflated reliability.

3.6  |  Planned analyses: Mixed ICs

To clarify whether rdICA led to a higher proportion of 
mixed ICs, Figure 5 compares the percent variance ac-
counted for (PVAF) of ICs that were labeled with low 
confidence by IClabel (ignoring the confidence of the 
“other” label classification). In general, full dimension-
ality ICA was associated with smaller proportions of 
mixed ICs as compared to the other conditions, though 
the difference was much greater for the 99% and 90% 
condition.

We then conducted follow-up mediation analyses to 
test whether reductions in ERP data quality associated 

F I G U R E  4   Effect of reduced dimensionality ICA on the reliability of N1 and P3. ‘Raw r’ is the uncorrected correlation coefficient 
between even and odd trials. ‘SB r’ is spearman-Brown corrected coefficient that estimates the reliability of the component after accounting 
for halving the number of trials. Numbers in brackets are 95% confidence intervals.
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F I G U R E  5   Comparison of the proportion of mixed ICs for rdICA. ICs were classified as mixed if they could not be labeled as eye, brain, 
EKG, muscle, channel noise or line noise with greater than 80% confidence by the automatic IC classifier IClabel. See Figure 2 for further 
figure description.

T A B L E  1   Summary of ACME results

Component
Dependent 
variable Full vs. half Full vs. 99% Full vs. 90%

N1 Mean Amp. N/A N/A β = −0.06, 95% CI 
[−0.15, 0.01], p = .13

SME β = 0, 95% CI [0, 0], p = .94 N/A N/A

P3 Diff. Mean Amp. N/A N/A N/A

SME β = −0.02, 95% CI [−0.06, 0.02], p = .4 N/A N/A

Note: N/A denotes that the mediation analysis was not conducted because there was not a significant effect of condition on the dependent variable in the 
expected direction. Note that we only observed significant changes in data quality in the expected direction for 3 out of 12 possible comparisons.
Abbreviation: ACME, average causal mediation effect.
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with reduced dimensionality ICA were due to higher pro-
portions of mixed ICs. We did not observe strong evidence 
that the proportion of mixed ICs mediated the relationship 
between rdICA and data quality (see Table 1). This sug-
gests that, while the proportion of mixed ICs was higher 
for reduced dimensionality ICA solutions, this increase 
did not compellingly account for downstream reductions 
in ERP data quality.

3.7  |  Agreement between primary and 
validation results

Figures S2–S5 and Table S1 depict the same set of compar-
isons and statistical tests for the P1 and N2 components 
elicited during a visual target detection task in an inde-
pendent sample of healthy controls. For mean amplitude, 
both the main dataset and validation dataset showed a 
significant attenuation of mean amplitude for the earlier, 
sensory components (i.e., N1 for main analysis, P1 for vali-
dation analysis) for the 90% relative to full dimensional-
ity. Other than this decrement for the 90% condition, we 
did not observe any other significant differences in mean 
amplitude in the expected direction for either the main or 
validation datasets.

For SME, we observed an effect of greater SME for 
half dimensionality relative to full dimensionality for 
both P1 and N2 components in the validation dataset 
which is also consistent with the primary analysis. One 
important difference between datasets; however, is that a 
single large outlier (>3 SDs from mean) was evident in 
the 99% and 90% conditions in the validation dataset only. 
Interestingly, this outlier was not influential enough to 
create a significant difference in SME between full vs. 99% 
or 90%. This lack of difference is also consistent with the 
primary analysis.

The reliability coefficients for the validation dataset 
were also affected by a single large outlier for the 99% and 
90% conditions which led to poor reliability for P1 compo-
nent, but not the N2 component. Whereas for the primary 
analysis the 90% condition exhibited the highest reliability 
coefficients for both components, the 90% condition in the 
validation dataset exhibited the poorest reliability for the 
P1 component (though again this is likely primarily due 
to the highly influential outlier). The N2 component also 
was influenced by this outlier; however in this case the 
reliability coefficient was likely overestimated.

Similar to the primary analysis, the 90% and 99% con-
ditions were associated with a substantial increase in the 
proportion of mixed ICs in the validation dataset. In both 
datasets, the half dimensionality condition was not asso-
ciated with an increase in proportion of mixed ICs. Finally 
the lack of a mediating effect of proportion of mixed ICs 

observed in the primary analysis was again observed in 
the validation dataset.

4   |   DISCUSSION

4.1  |  Summary

The present study sought to examine the effect of reduced 
dimensionality ICA on downstream data quality for com-
mon ERP components. We observed statistically and prac-
tically significant changes in the mean amplitude of early 
sensory components (P1 and N1) for the most drastic di-
mension reduction condition (90% variance thresholded 
PCA), but did not observe such differences for the other 
conditions or later, cognitive components (N2 and P3). 
The standardized measurement error (a proposed univer-
sal metric of data quality), was larger for all components 
in the half dimensionality condition, but not in the 99% 
or 90% conditions. The effect of rdICA on split-half reli-
ability was less clear: In the primary analysis, the split-
half reliability was largest for the 90% condition for the N1 
and P3, while, for the validation dataset, the reliability was 
lowest for the 90% condition at P1, but then highest again 
for the N2 component. Finally, the proportion of mixed 
ICs was generally larger for the reduced dimensionality 
conditions, but this increase did not explain changes in 
downstream data quality.

4.2  |  Best practices for reducing 
dimensionality prior to ICA

A primary aim of this work was to establish recommenda-
tions for the judicious use of reduced dimensionality ICA. 
The following recommendations are based on the data we 
observed. Of course, the appropriateness of these recom-
mendations will vary from researcher to researcher, lab to 
lab and content area to content area.

4.2.1  |  Recommendation #1: The threshold 
for a PCA thresholded rdICA should generally 
be at 99% or higher

One of the more consistent effects we observed across both 
datasets was the shift of mean amplitudes toward zero for 
the 90% condition in earlier sensory components. In gen-
eral, the 90% PCA seemed to underestimate the number of 
components in a given recording (see Figure S6). On the 
other hand, the 99% thresholded mean amplitudes, across 
both datasets, did not significantly differ from the full di-
mensionality mean amplitudes and the Bayes factors were 
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below 0.33 suggesting that the data were more consistent 
with the null hypothesis (i.e., no difference between condi-
tions). Importantly, 99% variance thresholded PCA-based 
rdICA was not associated with increases in SME in either 
datasets such that single trial data quality does not appear 
to be meaningfully affected by the PCA-based dimension 
reduction procedure. Thus, the 99% percent threshold was 
generally acceptable for preserving data quality. However, 
even for this more conservative 99% condition, there were 
two individuals in the primary dataset and one individual 
in the validation dataset for which only a single compo-
nent was submitted to ICA (again see Figure S6). This sug-
gests that even the 99% condition likely underestimates 
the number of components in a given recording. Future 
work would benefit from looking at even more conserva-
tive thresholds (e.g., 99.5% or 99.9%).

4.2.2  |  Recommendation #2: PCA 
thresholded rdICA should generally be used in 
situations in which scalability is a priority

One might reasonably ask, if one needs to preserve at least 
99% (or more) of the variance, can we really expect ICA 
to run much faster? For our datasets, the answer seems 
to be a resounding yes! In our main analysis, the full di-
mensionality ICA was 4.6 times slower than 99% rdICA 
(see Table S4). Even more importantly, from a scalability 
perspective, the ratio of the maximum ICA run time for 
full ICA relative to 99% was 15.57 (i.e., the maximum run 
time for the full condition was 15x greater than the maxi-
mum for 99%). Similar ratios were observed in the valida-
tion dataset as well. Thus, for analyses in which scalability 
and processing speed are a priority, a PCA thresholded 
ICA may be valuable as long as the threshold is kept at or 
above 99%.

4.2.3  |  Recommendation #3: Subsetting to 
a smaller number of electrodes leads to poorer 
data quality

Across both data sets, we observed a consistent increase 
in SME when dimensionality was decreased by subsetting 
electrodes prior to ICA. Thus, we cannot recommend in-
creasing computation efficiency via electrode subsetting. 
This finding also speaks to the possible benefits of record-
ing from higher density montages. The electrode subset-
ting condition can be thought of as an approximated 64 
channel montage recording. Given that the sparser record-
ing led to poorer data quality, an argument can be made 
that, everything else being equal, higher density montages 
lead to improved data quality of ERP components. Having 

said this, as the number of electrodes increases, the elec-
trode preparation becomes more difficult and likelihood 
of “bridging” electrodes increases such that in a “true” 64 
electrode recording, more care may have gone into abrad-
ing the scalp and gelling the electrodes. Thus, it is possi-
ble that any difference in SME between higher and lower 
density systems may be washed out by the improvement 
in SME from more careful electrode preparation.

4.2.4  |  Recommendation #4: If you choose 
to use a PCA-based rdICA strategy, monitor 
for outliers

We observed a single large outlier and a few smaller mean 
amplitude outliers created by both the 99% and 90% rdI-
CAs. Given the low base rate of this effect (four for 90% 
and one for 99%; see Table S4), it is unclear whether this is 
a common issue with PCA-based rdICA; however, further 
work may be helpful for elucidating how and why PCA 
thresholded rdICA might generate outlying data points. 
Thus, we recommend that if one chooses a PCA-based re-
duction strategy close monitoring for outliers is essential.

4.3  |  Limitations and future directions

Although we attempted to maximize external valid-
ity by including an independent validation dataset re-
corded on a different EEG system with different task 
demands and distinct underlying cognitive processes, 
replication of our findings in other datasets will be cru-
cial. Furthermore, although the 99% PCA condition ap-
peared to best balance computational efficiency and data 
quality in our analyses; there may be more sophisticated 
methods for optimizing this trade-off between efficiency 
and data quality. For example, information theoretic ap-
proaches such as Bayesian Information Criterion (BIC; 
Schwarz,  1978) provide an alternative to selecting the 
number of components based on the explained variance, 
and have previously been applied in the context of scalp 
EEG recordings (Kovacevic & McIntosh, 2007). Future 
work might consider whether information theoretic 
approaches for selecting the number of components 
outperform component selection based on explained 
variance. Other methods have been developed for use 
with neural data other than EEG, such as targeted di-
mensionality reduction (TDR; Cohen & Maunsell, 2010; 
Cunningham & Yu, 2014; Mante et al., 2013) via multi-
nomial logistic reduction. TDR attempts to reduce the 
data to a small number of dimensions that are maxi-
mally related to some task variable of interest. While 
this method might be useful in the context of scalp EEG 
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where there is a specific target variable of interest, to 
our knowledge this approach has not been applied to 
scalp EEG. Unsupervised dimension reduction methods 
have also been applied to scalp EEG, most notably in the 
case of k-means clustering for EEG microstate analysis 
(Khanna et al., 2015); however, the application of unsu-
pervised clustering approaches for dimension reduction 
prior to ICA is unclear.

Finally, we cannot, in the present study, speak to the 
effect of rdICA on the split-half reliability of ERP com-
ponents due the conflicting trends observed between the 
primary and validation datasets. Given the continued 
interest in understanding the relationship between indi-
vidual differences in ERPs and psychological constructs, 
clarifying the discrepancy in reliabilities reported here 
may be important for further justifying the use of rdICA.

4.4  |  Deviations from registered 
analysis plans

Great care was taken to follow the registered analysis 
plans as closely as possible; however, there were a hand-
ful of deviations from this plan which we believe im-
proved the quality of the paper. First, we decided to use 
the pop_clean_rawdata function in place of pop_rejchan 
because pop_rejchan was not detecting obvious bad elec-
trodes prior to ICA. We do not believe this biased our re-
sults toward a given condition because electrode rejection 
occurred prior to ICA such that all conditions were fed 
the exact same data. Furthermore, pop_clean_rawdata is 
a commonly used function for detecting bad electrodes 
which means this change did not sacrifice generalizability 
of our results. Also, we initially specified including 40 sub-
jects in the main analysis, however, we discovered three 
additional subjects during our analyses and decided to in-
clude them in our sample to increase power.

4.5  |  Conclusion: When is rdICA 
justified?

Based on the observed data, we argue that PCA-based 
rdICA is justifiable when used sparingly. In fact, it is 
often common practice to conduct a PCA prior to ICA 
when there is linear dependency in a given EEG data ma-
trix. Such linear dependency means that at least one of 
the channels in the data matrix is not providing any in-
dependent information (this is especially common when 
the gel from two neighboring channels bridge together). 
Fortunately, the rank of a data matrix can be algebraically 
determined and PCA can then be used to reduce the ma-
trix to a full rank state. Thus, reducing the dimensionality 

of a data matrix prior to ICA in this context is not contro-
versial and, in fact, is a common procedure for many ICA 
pipelines!

Instead, it would seem the crux of the issue is: by how 
much should we reduce the dimensionality of a given data 
matrix? Our findings align with those of Artoni et al. that 
PCA thresholds below 99% tend to reduce the dimension-
ality too aggressively such that important information is 
lost and/or ICA does not have sufficient degrees of free-
dom to separate source signals effectively. Having said this, 
our results indicate that the 99% threshold PCA was less 
prone to “over-reducing” and the downstream data quality 
did not significantly suffer as compared to full dimension-
ality. Thus, we argue that as long as researchers are aware 
of possible pitfalls of reducing dimensionality (e.g., “over-
reducing”, outlier generation, possible departures from 
normality, etc.) rdICA may not only be justified, but may 
be crucial for enhancing the rate of progress and broaden-
ing the scope of psychophysiological research.
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SUPPORTING INFORMATION
Additional supporting information can be found online 
in the Supporting Information section at the end of this 
article.

Figure S1 Grand average waveforms and topographies 
by condition in validation dataset. The P1 component 
is averaged across all trials while the N2 is a difference 
wave of the target minus nontarget trials. To mitigate the 
effect of outliers, a robust biweight approach was used for 
grand averaging (Hoaglin et al.,  1983). Note that the N2 
difference component was not clearly recognizable in the 
grand average waveforms; however, we report on the data 
quality of this component in accordance with the registered 
analysis plans. It is possible that the number of trials or 
number of individuals in this sample was not sufficiently 
large to successfully characterize the component.
Figure S2 Effect of reduced dimensionality ICA on P1 
and N2 mean amplitudes in validation dataset. Gray 
dots represent each individual and gray lines connect 
each individual across conditions. Red lines represent 
the mean. BF is the Bayes factor in which the alternative 
hypothesis is in the numerator and the null hypothesis is 
in the denominator. Full: full dimensionality ICA; Half: 
odd electrodes only submitted to ICA; 99%: ICA preceded 
by PCA retaining 99% of the variance; 90%: same as 99% 
except retaining only 90% of the variance.
Figure S3 Effect of reduced dimensionality ICA on the 
standardized measurement error of P1 and N2 in validation 
dataset. Standardized measurement error (SME) was 
calculated as the standard deviation of a given set of 
single-trial mean amplitudes divided by the square root of 
the number of trials. Larger SME values are interpreted as 
indicating more noise because a high SME value implies 
a large spread of single trial mean amplitudes when the 
number of trials are held constant. See Figure 2 for further 
description.
Figure S4 Effect of reduced dimensionality ICA on the 
reliability of P1 and N2 in validation dataset. ‘Raw r’ is the 
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uncorrected correlation coefficient between even and odd 
trials. ‘SB r’ is Spearman-Brown corrected coefficient that 
estimates the reliability of the component after accounting 
for halving the number of trials. Numbers in brackets are 
95% confidence intervals.
Figure S5 Comparison of the proportion of mixed ICs for 
rdICA. ICs were classified as mixed if they could not be 
labeled as eye, brain, EKG, muscle, channel noise or line 
noise with greater than 80% confidence by the automatic IC 
classifier IClabel. See Figure 2 for further figure description.
Figure S6 Number of principal components after 
thresholding. Dashed line represents the mean for each 
condition. Numbers next to dashed lines indicate mean 
and standard deviation.

Table S1 Summary of ACME results in validation dataset
Table S2 Summary of Anderson-Darling tests of normality
Table S3 Generalized extreme studentized
Table S4 ICA run times relative to full ICA
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