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We demonstrate a data-driven approach for calculating a “causal connectome ” of directed connectivity from 

resting-state fMRI data using a greedy adjacency search and pairwise non-Gaussian edge orientations. We used 

this approach to construct n = 442 causal connectomes. These connectomes were very sparse in comparison to 

typical Pearson correlation-based graphs (roughly 2.25% edge density) yet were fully connected in nearly all 

cases. Prominent highly connected hubs of the causal connectome were situated in attentional (dorsal atten- 

tion) and executive (frontoparietal and cingulo-opercular) networks. These hub networks had distinctly different 

connectivity profiles: attentional networks shared incoming connections with sensory regions and outgoing con- 

nections with higher cognitive networks, while executive networks primarily connected to other higher cognitive 

networks and had a high degree of bidirected connectivity. Virtual lesion analyses accentuated these findings, 

demonstrating that attentional and executive hub networks are points of critical vulnerability in the human 

causal connectome. These data highlight the central role of attention and executive control networks in the hu- 

man cortical connectome and set the stage for future applications of data-driven causal connectivity analysis in 

psychiatry. 
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. Introduction 

Brain network interactions give rise to information processing and

ognition ( Bressler, 1995 ; Bullmore and Sporns, 2009 ; Friston, 2002 ;

cIntosh, 2000 ). Brain networks have a non-random topological orga-

ization ( Bullmore and Sporns, 2009 ), including both segregated mod-

les and a small number of highly connected nodes ( Achard et al.,

006 ; Eguíluz et al., 2005 ; Sporns et al., 2007 ; van den Heuvel and

porns, 2013 ), the “hubs ” of the connectome. These hubs coordinate

he transfer of large amounts of information through brain circuits

 Mi š i ć et al., 2015 , 2014 ; van den Heuvel et al., 2012 ) and play a

ritical role in coordinating communication between disparate brain

egions ( Cole et al., 2013 ; Sporns, 2013 , 2012 ; van den Heuvel and

porns, 2011 ). Here we present data on a “causal connectome ” derived

rom resting-state neuroimaging data using a data-driven causal discov-

ry method that first estimates directly connected brain regions without

he false positives produced by typical connectivity methods ( Reid et al.,

019 ), then additionally estimates the direction of those connections.

e describe the characteristics of this causal connectome, with a spe-

ific focus on the central hubs of the resting-state causal connectome.

hile networks with directional information have several designations
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n the literature (effective, causal, directed), for consistency we will re-

er to these networks as causal networks throughout this manuscript. 

Hub-like connectivity can be characterized using measures of cen-

rality, a set of metrics that quantify the capacity of a node in a graph

o influence (or be influenced by) other nodes. Over 100 measures of

entrality have been proposed ( Jalili et al., 2015 ), only a subset of

hich are commonly applied to brain network analysis ( Rubinov and

porns, 2010 ; van den Heuvel and Sporns, 2013 ). The most common is

egree centrality (the number of connections attached to each node),

hich has a simple and intuitive interpretation, but alone provides lim-

ted information. For example, a node might have relatively few con-

ections, but still act as an important bottleneck for communication be-

ween many other nodes in the network. Such a node could be thought

f as a city highway. While it might have relatively few direct connec-

ions (entrances and exits), the highway still serves as the quickest path

etween many locations in the city. To capture this type of connectiv-

ty, measures such as betweenness centrality (how often a node lies on

he shortest path between two other nodes; ( Freeman, 1977 )) have been

eveloped. 

Different metrics for centrality are often highly correlated with each

ther ( Oldham et al., 2019 ; Oldham and Fornito, 2019 ), but some
il 2022 
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entrality metrics may be more appropriate for certain types of net-

orks than for others. For example, while degree centrality is fre-

uently used for characterizing structural brain hubs ( Crossley et al.,

014 ; Rubinov et al., 2015 ), degree in correlation-based fMRI networks

s biased to identify nodes that are part of the largest (number of

odes/regions) resting-state networks (RSNs) of the brain ( Power et al.,

013 ; van den Heuvel and Sporns, 2013 ). Thus, early degree-based anal-

ses often identified high-degree nodes in the default mode network

 Buckner et al., 2009 ; Cole et al., 2010 ; Power et al., 2013 ; Tomasi and

olkow, 2011 ; van den Heuvel and Sporns, 2013 ), one of the brain’s

argest resting-state subnetworks. Because of this confound, groups us-

ng Pearson correlation-based network analyses of fMRI data have con-

idered alternative methods for identifying functional hubs, including

etrics that consider the diversity of between-RSN connections such as

articipation coefficient ( Bertolero et al., 2018 ; Grayson et al., 2014 ;

ower et al., 2013 ; Reber et al., 2021 ), and coactivation/connectivity

ver multiple cognitive tasks ( Cocuzza et al., 2020 ; Cole et al., 2013 ;

rossley et al., 2014 , 2013 ; Ray et al., 2020 ). These more recent analyses

eveal a set of brain hubs distributed broadly through frontal, parietal,

nd temporal cortices. Notably, defining what constitutes “high ” cen-

rality is dependent on the distribution of centralities exhibited by the

etwork, and there is no evidence that one-size-fits-all cutoffs for cat-

gorizing network nodes as hubs can be meaningfully applied to brain

etworks. For example, when a cutoff for defining hubs as proposed in

 Guimerà and Nunes Amaral, 2005 ) was applied to the brain network

xamined in Power et al. (2013) , only a single local hub was identified.

s such, the distinction between what constitutes a hub as opposed to a

on-hub is essentially arbitrary ( Oldham and Fornito, 2019 ). Our anal-

sis of hub connectivity will thus focus on continuous measures of cen-

rality, providing a quantitative comparative measure of which brain

etworks or nodes are more hub-like than others in the investigated

ausal connectome. 

Critical to our current investigation, most resting-state fMRI connec-

ivity studies use Pearson correlations to estimate undirected connec-

omes, providing information about connected brain regions (hereafter

djacencies), but not the direction of these connections (hereafter ori-

ntations). There is a recognized need for network modeling methods

hat can accurately estimate adjacencies without the false positives in-

erent to correlation-based approaches ( Reid et al., 2019 ; Smith et al.,

011 ), as well as estimating the direction or orientation of these edges

referred to as causal or effective connectivity ( Ramsey et al., 2010 ;

eid et al., 2019 ; Smith, 2012 ). However, current methods for fMRI

esting-state causal connectivity are limited ( Ramsey et al., 2014 , 2010 ;

anchez-Romero et al., 2019 ; Smith et al., 2011 ). Granger causality

 Granger, 1969 ) attempts to recover causal influences using time-lagged

egressions. Smith et al. (2011) found that several variations of Granger

ausality have negligible accuracy in detecting adjacencies or orienta-

ions in simulated fMRI data, and Sanchez-Romero et al. (2019) tested

wo additional variations of Granger causality (multivariate Granger

ausality; ( Barnett and Seth, 2014 ); autoregressive modeling with per-

utation testing; ( Gilson et al., 2017 )), finding that these more recent

ethods also had low precision for adjacencies and orientations in the

resence of realistic noise. GIMME ( Gates and Molenaar, 2012 ), a group-

evel algorithm that also uses time lags to infer causality, achieves better

erformance, but is computationally intensive and can only scale to a

mall number of brain regions ( Sanchez-Romero et al., 2019 ). Dynamic

ausal modeling DCM; ( Friston et al., 2003 ) was originally designed for

ask-based fMRI data, but the stochastic DCM ( Li et al., 2011 ) and spec-

ral DCM ( Friston et al., 2014 ) variants can be applied to resting-state

MRI data (albeit only for a small number of brain regions due to com-

utational demands). Frässle et al. (2021) recently proposed a highly

calable variant of regression DCM ( Frässle et al., 2017 ) for resting-

tate fMRI data that is scalable enough to support whole-cortex analyses.

hile the connectomes generated by this newly proposed method ap-

ear to have face validity ( Frässle et al., 2021 ), a quantitative analysis of

arge-scale resting-state connectivity patterns using regression-DCM has
2 
ot yet been completed. Instead, the current report focuses on a distinct

et of methods grounded on Bayes networks, which have promise for un-

overing causal connectivity from fMRI ( Mumford and Ramsey, 2014 ;

amsey et al., 2014 ; Sanchez-Romero et al., 2019 ), and for dealing with

he high dimensionality of whole-cortex data ( Ramsey et al., 2017 ).

nlike GIMME, spectral DCM, and stochastic DCM, Bayes net methods

re highly scalable, and unlike regression DCM, these methods do not

equire specification of priors or hemodynamic response function and

ake no assumptions about the physiology giving rise to the observed

emodynamic signal. Suitable combinations of causal discovery-based

ethods can achieve near-perfect precision and recall in simulated fMRI

ata ( Hyvärinen and Smith, 2013 ; Ramsey et al., 2014 ), even for net-

orks with feedback cycles ( Sanchez-Romero et al., 2019 ). 

In the current study, we capitalize on these recent advances in

ausal discovery machine learning to build whole-cortex causal con-

ectomes from single-subject resting-state fMRI data. We apply a vari-

tion of a previously proposed (( Ramsey et al., 2011 ), 2014 ; Sanchez-

omero et al., 2019 ) two-step causal discovery framework that breaks

he connectome computation into separate adjacency and orientation

teps. For convenience we refer to our approach as GANGO (Greedy

djacencies and Non-Gaussian Orientations). GANGO first estimates

hole-cortex adjacencies using Fast Greedy Equivalence Search (FGES;

 Ramsey et al., 2017 )). FGES is a parallelized version of Greedy Equiva-

ence Search ( Chickering, 2002 ), a Bayes Network method with high

ensitivity for detecting adjacencies, but poor accuracy for orienta-

ions in simulated fMRI data ( Smith et al., 2011 ). Thus, we follow

his initial adjacency search with a pairwise edge orientation algo-

ithm that exploits non-Gaussian information in the hemodynamic sig-

al ( Hyvärinen and Smith, 2013 ), shown in Ramsey et al. (2014) ,

anchez-Romero et al. (2019) to have high precision and recall for de-

ermining edge orientation of the Smith et al. (2011) simulations. We

hus obtain, on a single-subject basis, a whole-cortex graph summarizing

ominant causal connectivity between brain regions. We focus our in-

estigation on the hub structure of this novel causal connectome. Over-

ll, we demonstrate hub-like causal connectivity profiles of the dorsal

ttention network, frontoparietal network, and cingulo-opercular net-

ork. 

. Methods 

.1. Subjects 

All analyses used publicly available resting-state functional neu-

oimaging data from 442 unrelated healthy young adult subjects re-

ruited as part of the Washington University – Minnesota (WU-Minn)

uman Connectome Project Consortium (56% [ n = 248] female; aged

2–35 [mean age = 28.6 years]; https://db.humanconnectome.org/

ata/projects/HCP_1200 ) ( Barch et al., 2013 ; Glasser et al., 2013 ;

arcus et al., 2013 ; Smith et al., 2013 ; U ğurbil et al., 2013 ; Van Essen

t al., 2013 ). All subjects provided written informed consent at Wash-

ngton University. 

.2. Resting-state fMRI acquisition and preprocessing 

Structural (T1 and T2 images, required for preprocessing functional

euroimaging data) and functional MRI data were collected at Wash-

ngton University on the Siemens 3T Connectome Skyra scanner. Full

etails of the acquisition parameters for the HCP data are described in

 U ğurbil et al., 2013 ). Each subject’s resting-state data was collected

ver two days in four sessions (14:33/session; 1200 samples/session).

n this study we analyzed only one day of data (two runs, individually

-scored and concatenated) to limit potential state influences on fMRI

easures. Structural and functional data preprocessing is described in

lasser et al. (2013) , and used version 3.21 of the HCP preprocessing

ipeline. Structural data preprocessing consisted of bias field and gra-

ient distortion correction, coregistration of T1/T2 images, and regis-

https://db.humanconnectome.org/data/projects/HCP_1200
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ration to MNI space. Cortical surface meshes were constructed using

reeSurfer, transformed to MNI space, registered to individual surfaces,

nd downsampled. Functional MRI preprocessing consisted of gradient

istortion correction, motion correction, EPI distortion correction, fol-

owed by T1 registration. Transforms were concatenated and run in a

ingle nonlinear resampling to MNI space followed by intensity normal-

zation. Data were masked by the FreeSurfer brain mask, and volumetric

ata were mapped to a combined cortical surface vertex and subcortical

oxel space ( “grayordinates ”) using a multimodal surface registration

lgorithm ( Robinson et al., 2014 ) and smoothed with a 2 mm FWHM

aussian in surface space (thus avoiding smoothing over gyral banks).

MRI data were conservatively high-pass filtered with FWHM = 2000 s

nd cleaned of artifacts using ICA-FIX ( Griffanti et al., 2014 ; Salimi-

horshidi et al., 2014 ). This filter was implemented as a weighted linear

unction in FSL v6.0.2, which was shown in Ramsey et al. (2014) to not

ntroduce Gaussian trends into the data (unlike e.g., Butterworth filters

r the built-in SPM filter). Artifact components and 24 motion parame-

ers were regressed out of the functional data in a single step, producing

he final ICA-FIX denoised version of the data in CIFTI ( “grayordinates ”)

pace ( Glasser et al., 2016b ) that was used in subsequent analyses. 

.3. Construction of whole-brain causal connectomes 

Our analysis pipeline began with n = 442 sets of preprocessed, multi-

odally surface registered, ICA-FIX denoised fMRI data provided by the

CP consortium. We parcellated cortex surface vertices into 360 re-

ions using a recently developed multimodal parcellation ( Glasser et al.,

016a ). 

We implement a computational strategy to define causal connec-

omes on a per-subject basis using a two-step process we refer to as

ANGO (Greedy Adjacencies and Non-Gaussian Orientations). This ap-

roach is motivated by previous work (( Ramsey et al., 2011 ), 2014 ;

anchez-Romero et al., 2019 ; Smith et al., 2011 ) indicating that (1)

ayes net algorithms such as PC (Spirtes et al., 2001) and Greedy Equiv-

lence Search ( Chickering, 2002 ) provide a highly precise solution to

dentify nodal adjacencies (but not orientations) in simulated fMRI data,

nd (2) pairwise orientation algorithms based on data skewness can ac-

urately identify edge orientations in simulated fMRI data. In the first

tep, the GANGO approach defines nodal adjacencies (connected re-

ions) using Fast Greedy Equivalence Search (FGES; ( Ramsey et al.,

017 )), a parallelized and highly scalable version of GES. This algo-

ithm finds a sparse set of directed and undirected connections between

ontinuous variables by minimizing a penalized likelihood score over

he entire graph, typically scored using the Bayesian Information Crite-

ion (BIC; ( Schwarz, 1978 )). FGES proceeds in two stages, first adding

dges until the BIC stops improving, then removing edges until the BIC

tops improving ( Ramsey et al., 2017 ). While FGES has not commonly

een used for analysis of empirical neuroimaging data, this method was

pplied (in combination with direct stimulation) to test causal connec-

ivity patterns of the amygdala ( Dubois et al., 2020 ) with promising ini-

ial findings for mapping human emotion networks. We computed FGES

ith causal-cmd v1.2.0 ( https://bd2kccd.github.io/docs/causal-cmd/ )

sing default parameters (BIC penalized likelihood score, penalty dis-

ount = 1 corresponding to the classic BIC score). GES has been shown

n simulations to obtain highly accurate estimates of nodal adjacencies,

ut relatively inaccurate orientations ( Smith et al., 2011 ). Therefore, we

ade the FGES-derived graph undirected by symmetrizing it across the

iagonal. 

The GANGO approach then orients these undirected edges using non-

aussian information in the BOLD signal. We applied an estimate of the

irection of causal effect based on pairwise likelihood ratios under the

inear non-Gaussian acyclic model ( Hyvärinen and Smith, 2013 ). Sev-

ral approaches have been proposed to orient causal graph edges using

on-Gaussian information. For example, Ramsey et al. ( Ramsey et al.,

011 ) used IMaGES (a group-level version of GES) to infer adjacencies

rom fMRI data and proposed two early measures for orienting edges us-
3 
ng non-Gaussian information. More recent approaches ( Hyvärinen and

mith, 2013 ; Ramsey et al., 2014 ; Sanchez-Romero et al., 2019 ) have

uilt on these early algorithms, with improved orientation accuracy.

or the GANGO framework, we adopt the RSkew method, an outlier-

obust skew-based measure ( Hyvärinen and Smith, 2013 ). RSkew has

hown to generate optimal estimates of causal direction in simulated

MRI data ( Ramsey et al., 2014 ; Sanchez-Romero et al., 2019 ), and

as calculated using the authors’ MATLAB implementation of RSkew

 https://www.cs.helsinki.fi/u/ahyvarin/code/pwcausal/ ; RSkew is

ethod 4). Hyvärinen and Smith (2013) provide an explanation of how

on-Gaussian information can be used to orient edges between pairs

f variables. Assuming x > y , both variables will have large values in

ases where x is large (but x will not necessarily take on large values

hen y is large). Due to regression towards the mean, the value of x

ust typically be larger than that of y. Cumulant-based approaches

uch as RSkew, the method used here, calculate pairwise contrasts that

agnify extreme values of either x or y, allowing determination of the

ost likely causal direction. For an in-depth explanation, we refer the

eader to ( Hyvärinen and Smith, 2013 ). 

Since the RSkew orientation method requires that data be skewed

o obtain accurate measures, we tested whether the resting-state data

et these assumptions. For each subject, we tested whether the BOLD

ata were significantly skewed with reference to Gaussian data using

n approach adapted from Sanchez-Romero et al. (2019) . Within each

ingle participant, we calculated the skewness of the BOLD time series

eparately for each parcel, resulting in 360 skewness values per sub-

ect. For each subject, we then simulated 360 Gaussian time series of

he same length as the BOLD data ( n = 2400 points) for use as surrogate

ata and calculated the skewness of each of the Gaussian time series.

or each subject, we then statistically tested whether the skewness of

he observed BOLD data ( n = 360 values) exceeded the skewness de-

ived from Gaussian surrogate data ( n = 360 values) using a one-tailed

ilcoxon rank sum test. Since both positive and negative skewness val-

es indicate skewed data, for all analyses we used the absolute value of

kewness. 

.4. Resting-State network connectivity statistics 

For each subject, we categorized brain regions into 12 resting-state

etworks (RSNs) using the recently developed Cole-Anticevic Brain-

ide Network Partition (CAB-NP) ( Ji et al., 2019 ). We established

hether each RSN shared a statistically significant proportion of con-

ections with each other RSN ( Fig. 1 b) by calculating the total number

f connections that the RSN shared with the other 11 RSNs (the total

umber of out-of-RSN connections). Then, by dividing that total by 11,

e arrive at a suitable null hypothesis of equal inter-RSN connectivity

i.e., that the RSN shared out-of-RSN connections equally between the

ther 11 RSNs). For each of the other 11 RSNs, we tested the actual

umber of shared between-RSN connections against the null hypothesis

f equal connectivity to all 11 RSNs using Wilcoxon signed-rank tests,

hich we corrected for multiple corrections using the false discovery

ate (FDR) procedure ( Benjamini and Hochberg, 1995 ), thus establish-

ng whether pairs of RSNs were significantly connected. To clarify the

irection of causal connectivity between significantly connected pairs of

SNs, we calculated the proportion of causal connections from each RSN

o each other RSN, then compared that proportion against a null hypoth-

sis of 50% (i.e., that the connections between the pair of RSNs A & B are

qually from A to B and from B to A) using Wilcoxon signed-rank tests

FDR-corrected for multiple comparisons). For each pair of RSNs found

o be significant with reference to a null hypothesis of equal (i.e., ran-

om) inter-RSN connectivity, we calculated the effect size of the test for

ignificant shared connections using Cohen’s d, and masked inter-RSN

onnections that did not meet at least the threshold for a small effect size

Cohen’s d > = 0.2). We plot this result in the form of a force-directed

raph, by first drawing connections between pairs of significantly con-

ected networks. If we were able to determine a significant direction

https://bd2kccd.github.io/docs/causal-cmd/
https://www.cs.helsinki.fi/u/ahyvarin/code/pwcausal/
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Fig. 1. Summary of the strategy we employed to build single-subject ( n = 442) causal connectivity graphs for further analysis, and the analyses we ran to characterize 

the hub structure of these RSNs. 

A: Described in Section 2.3 (Methods). The brain surface in the plot is a single TR of a randomly selected subject’s resting-state data, representing the resting-state 

activation maps from which causal connectomes were computed, to illustrate the preprocessing steps. 

B: Described in Section 2.4 (Methods) and Section 3.3 (Results). 

C : Described in Section 2.5 (Methods) and Section 3.4 (Results). 

D: Described in Section 2.6 (Methods) and Sections 3.5 and 3.6 (Results). 

E: Described in Section 2.7 (Methods) and Section 3.7 (Results). 
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f connectivity, this connection was unidirectional; otherwise, the con-

ection was drawn bidirectional. For significantly one-directional con-

ections, we also recorded the proportion of connections going in the

ignificant direction. This analysis clarified (a) which RSNs are signifi-

antly connected with at least a small effect size, and (b) which RSNs

ignificantly send (vs. receive) information to (vs. from) other RSNs. We

upplemented this with an analysis of participation coefficient (a mea-

ure of the diversity of RSNs a node connects to), calculated separately

or incoming and outgoing connections. Participation coefficient P i of

ode i is calculated according to the equation 𝑃 𝑖 = 1 − 

𝑁 𝑀 ∑

𝑠 =1 
( 𝜅𝑖𝑠 
𝐾 𝑖 

) 2 , where

𝑖𝑠 is the number of connections between node i and RSN s and K i is the
4 
otal degree of node i ( Guimerà and Nunes Amaral, 2005 ). For nodes

hat connect entirely within their own RSN, this equation results in a

articipation coefficient of zero, and for nodes that connect homoge-

eously over all RSNs the participation coefficient will approach one

 Guimerà and Nunes Amaral, 2005 ; Power et al., 2013 ). We computed

articipation coefficients using the part_coeff function in the Brain Con-

ectivity Toolbox ( Rubinov and Sporns, 2010 ). We compared nodal par-

icipation coefficients in 12 established RSNs ( Ji et al., 2019 ) that have

een validated for our current parcellation using Friedman tests (since

etwork is a within-subject measure) and conducted post-hoc pairwise

omparisons with control for multiple comparisons using the Nemenyi

est. 
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.5. Centrality distributions in human cortex 

For each causal graph, we calculated nodal ( n = 360) centrality

tatistics using indegree (number of incoming connections), outdegree

number of outgoing connections), and betweenness centrality (num-

er of shortest paths the node participates in) ( Fig. 1 c). To statistically

uantify whether centrality-based cortical hubs existed based on signifi-

antly heavy-tailed centrality distributions, we generated a reference set

f 1000 random directed graphs with the same number of nodes (360)

nd connections as the cortical causal graphs ( Fig. 1 c). Specifically, for

ach run (of 1000), we chose the exact number of connections by draw-

ng a random number from a normal distribution with the same mean

nd standard deviation as the number of connections across subjects

mean n connections = 1452, SD = 107); thus, the surrogate graphs

pproximated the distribution of connection counts present in the ac-

ual data. Random graphs were created using the makerandCIJ_dir func-

ion from the Brain Connectivity Toolbox ( Rubinov and Sporns, 2010 ),

hich creates a random directed (causal) graph with a specified num-

er of connections. As the degree distribution is the main variable in

his analysis, this function (adding connections randomly off the diag-

nal) produces random graphs with no constraints other than having

he overall number of connections be equivalent to the observed data.

his does not bias the resulting graphs to have small-world properties

e.g., an Erd ő s–Rényi graph; ( Erd ő s and Rényi, 1960 )) or to be con-

trained to having the same degree distribution as the FGES graphs

e.g., randomizing graphs derived from FGES). We then used Wilcoxon

ank-sum tests to compare the skewness of centrality distributions (in-

egree, outdegree, betweenness) of the causal connectivity graphs to

he random graphs. We additionally applied this permutation analysis

o categorize cortical nodes as hubs or non-hubs, based on whether a

ode’s centrality exceeded the 95th percentile of the surrogate distri-

ution (i.e., whether a node was significantly in the highly central tail

f the distribution). These binary masks of regions thus categorized as

ignificant hubs are provided in the supplement. 

.6. Resting-state network differences in centrality-based hubs 

We compared the average nodal centralities (degree, betweenness)

n 12 established RSNs ( Ji et al., 2019 ) that have been validated for

ur current parcellation ( Fig. 1 d), to obtain a continuous ranking of

hich networks are the most “hub-like ” in the causal connectome. For

ach subject, we calculated the average nodal indegree, outdegree, to-

al degree, and betweenness centrality for nodes within each of these

2 RSNs using the MATLAB centrality function. We compared centrality

cross the 12 RSNs using Friedman tests and conducted post-hoc pair-

ise comparisons with control for multiple comparisons using Nemenyi

ests. Additionally, we compared indegree and outdegree within each

f the 12 RSNs using Wilcoxon signed-rank tests, and FDR-corrected the

esulting p -values for n = 12 multiple comparisons. 

.7. Network vulnerability to targeted and random attack 

To clarify the functional role of hubs in the causal cortical network,

e subjected each subject’s causal connectome to a targeted attack anal-

sis. Broadly, virtual attack analyses proceed by deleting nodes from the

etwork and recording some measure of whole-network fitness as nodes

re removed. The dependent value in this analysis is chosen to be a mea-

ure of network functional integration, to characterize nodes that are

ost critical for network communication ( Rubinov and Sporns, 2010 ).

s discussed in ( Rubinov and Sporns, 2010 ), the most common mea-

ure of network functional integration is the characteristic path length

 Watts and Strogatz, 1998 ). However, characteristic path length cannot

e meaningfully computed on networks with disconnected nodes, as dis-

onnected nodes are defined to have infinite path length. Thus, authors

ave argued that global efficiency (the inverse shortest path lengths in
5 
he network, defined to be zero for disconnected nodes ( Latora and Mar-

hiori, 2001 )) is a superior measure of network functional integration

 Achard and Bullmore, 2007 ; Bassett and Bullmore, 2006 ; Rubinov and

porns, 2010 ). As such, network global efficiency is typically used as the

ependent value in published virtual attack analyses ( Crossley et al.,

014 ; Lin et al., 2018 ; Lo et al., 2015 ; van den Heuvel et al., 2018 ;

an den Heuvel and Sporns, 2011 ). 

To assess cortical vulnerability at the RSN level, we deleted the

odes of each RSN (one at a time) from the individual subject-level cor-

ical causal connectivity graphs, and we recorded changes in connec-

ome communication efficiency as percent change in global efficiency

 Fig. 1 e), calculated using the efficiency_bin function in the Brain Con-

ectivity Toolbox ( Rubinov and Sporns, 2010 ). We supplemented this

argeted attack analysis with a random attack analysis, by deleting ran-

omly selected nodes rather than specifically targeting nodes from one

SN at a time. To minimize order effects in the virtual lesion analysis

e ran the analysis 10 times for every subject, deleting the nodes within

ach RSN in a random order each time, then we took the mean of the effi-

iency loss over the 10 runs. This resulted in a set of 13 loss-of-efficiency

urves per subject that quantified how strongly communication was im-

aired as successive nodes from each RSN were deleted. We took the

ointwise derivative of each subject’s loss-of-efficiency curves (for each

f 13 deletion schedules) and compared the average pointwise slope

etween RSNs (plus random deletion) to quantify which RSN resulted

n the most rapid loss-of-efficiency. RSN deletion slopes were statisti-

ally compared using a Friedman test with post-hoc significance testing

sing the Nemenyi test. Additionally, we examined which nodes had

he greatest overall impact on connectome loss-of-efficiency by deleting

in single subjects) each node (of 360) one at a time and recording the

hange in overall global efficiency. 

. Results 

.1. Individual subjects functional neuroimaging data are non-Gaussian 

nd skewed 

Within each single subject, we compared the skewness of the fMRI

ime series to the skewness of random Gaussian data. This analysis re-

ealed that every single subject’s BOLD time series were significantly

rank sum tests, p < .05) more skewed than surrogate Gaussian data. At

he group level, data were significantly more skewed than random Gaus-

ian data as well ( p < .001). Thus, we conclude that the functional neu-

oimaging data analyzed in the current report are non-Gaussian, specif-

cally skewed, and therefore it is appropriate to apply the skew-based

rientation step to the analysis. 

.2. Whole-cortex causal graphs are sparse but well-connected 

The resulting whole-cortex causal connectomes were sparse, con-

aining only ∼2.25% of all possible connections (360 parcels: mean n

onnections = 1452). Nevertheless, the graphs were well-connected –

n most graphs (93.7%), every node was connected to at least one other

ode, and of the 6.3% of graphs that contained disconnected nodes, each

raph had very few disconnected nodes (median = 1, max = 2). Thus, de-

pite the sparsity of the cortical causal connectivity graphs, these graphs

ppear to capture global causal patterns of connectivity. 

.3. Diversity of inter-network connections highlights hub roles of multiple 

rain networks 

To summarize the overall connectivity structure of our cortical

ausal graphs, we categorized each of 360 cortical nodes into 12 resting-

tate networks (RSNs) ( Ji et al., 2019 ). For a visual of these 12 RSNs

lotted on the cortical surface, see Fig. 2 a. We first examined patterns

f connectivity between these large-scale brain RSNs. We established
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Fig. 2. Diversity of inter-network connections highlights hub roles of multiple brain networks. 

A: The cortical surface is a reference plot of the 12 RSNs from the Cole-Anticevic Brain-wide Network Partition (CAB-NP; color-coded). Significant inter-RSN 

connectivity of the cortical causal network, plotted in a force-directed layout. A clear hub-periphery structure emerged. The dorsal attention network formed 

a causal pathway from early visual RSNs to multimodal association RSNs. The frontoparietal network was situated in the center of the graph and overall, the 

most interconnected RSN, receiving directed connections from dorsal attention network, sending directed connections to ventral attention/language, limbic/orbito- 

affective, and default mode networks, and sharing bidirectional connections with cingulo-opercular network. Percentages on directed connections indicate the 

proportion of shared connections that were oriented in the statistically preferred direction. 

B: Cortical surface plot shows the average of nodal in-participation and out-participation coefficient values. Prominent high-participation nodes were apparent in 

parietal and frontal cortex. 

C: RSN average participation coefficients. Generally, the posterior multimodal, dorsal attention, frontoparietal, ventral attention, cingulo-opercular, and visual-1 

RSNs maintained a high diversity of out-of-RSN connections compared to the rest of the cortex. 
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hether each RSN shared a statistically significant proportion of con-

ections with each other RSN. We additionally tested for a preferred

irection of connectivity between significantly connected pairs of RSNs.

The result of this analysis is plotted as a force-directed graph, with

onnections drawn between RSNs that were found to be significantly

onnected. Connections are shown as unidirectional if rank-sum test-

ng indicated a preferred direction of connectivity, and connections are

hown as bidirectional if rank-sum testing was unable to determine a

referred direction of connections ( Fig. 2 a). A clear hub-periphery struc-

ure was apparent. We found that visual RSNs 1 and 2 were bidirec-

ionally interconnected, and that visual RSNs projected to the dorsal at-

ention network. The dorsal attention network projected to multimodal

ssociation networks (posterior and ventral) and the frontoparietal net-
6 
ork. The frontoparietal network was situated in the center of the

raph, being the most highly connected RSN and sending information

o the ventral attention/language, limbic/orbito-affective, and default

ode RSNs, while bidirectionally sharing connections with the cingulo-

percular network. This network connectivity diagram also demon-

trated significant bidirectional connectivity between auditory network

nd the ventral attention/language network, as well as showing strong

onnectivity between somatomotor and auditory network, which is to

e expected since these networks are spatially adjacent and are strongly

nterconnected (so strongly that they are frequently merged into the

ame network in the literature; ( Ji et al., 2019 )). 

We supplemented this analysis by an examination of the average

articipation coefficient within each RSN. Since we used causal con-
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ectivity graphs, we calculated participation coefficient separately us-

ng outgoing and incoming connections, resulting in two summary mea-

ures per RSN, per subject (hereafter out-part and in-part, respectively).

e found that across subjects, the twelve RSNs differed statistically in

oth out-part and in-part (Friedman tests; both p < .001). Post hoc com-

arisons (Nemenyi test) demonstrated similar patterns of RSN differ-

nces for out-part and in-part. The posterior multimodal and dorsal at-

ention RSNs demonstrated the highest participation coefficient values,

ollowed by the frontoparietal, ventral attention, cingulo-opercular, and

isual-1 RSNs (all p < .001). This analysis of participation coefficients

emonstrated that the dorsal attention, posterior multimodal associa-

ion, frontoparietal, ventral attention, cingulo-opercular, and visual-1

SNs maintain the greatest diversity of inter-RSN connections in the

ausal human connectome ( Fig. 2 b,c). 

.4. The causal connectome has a heavy-tailed centrality structure 

Thus far we have clarified patterns of inter-RSN connectivity in the

ausal connectome. From here, we examined the most important hubs

f the cortical causal connectome using two common centrality metrics:

egree centrality, which characterizes highly connected nodes, and be-

weenness centrality, which characterizes nodes that lie on many short-

st paths between other nodes and thus facilitate efficient network com-

unication ( Rubinov and Sporns, 2010 ). If nodes are to be considered

ubs based on centrality metrics, the distribution of those metrics should

e heavy tailed, with a minority of highly central nodes. We found that

he centrality distributions of the obtained causal graphs were indeed

eavy-tailed, with most nodes having very low centrality and relatively

ew nodes having very high causal centrality ( Fig. 3 a–d). Centrality val-

es of the causal connectivity graphs were significantly more heavy-

ailed than equally connected random comparison graphs, as confirmed

y comparing the skewness of the indegree, outdegree, total degree, and

etweenness distributions of these two sets of graphs (rank-sum tests, all

 < .001). We additionally leveraged this analysis to produce categorical

abels of individual brain regions as hubs if their centrality exceeded the

5th percentile of the surrogate distribution. These binary labels almost

xclusively designated regions of the lateral and superior parietal cortex

s hubs, along with some frontal nodes ( Supplement ). 

.5. The most central hubs of the causal connectome cluster in executive 

nd attentional networks 

The 12 RSNs differed in average indegree, outdegree, and total de-

ree (Friedman tests, all p < .001). Most relevant for the current work,

ost hoc testing for RSN degree differences (Nemenyi tests) demon-

trated that the dorsal attention and frontoparietal networks had signifi-

antly higher indegrees, outdegrees, and total degrees than the other 10

SNs (all p < .001). Similarly, comparison of average betweenness cen-

rality across the 12 RSNs ( Fig. 3 j) established that frontoparietal nodes

articipated in the greatest number of efficient paths, followed by dor-

al attention nodes; these RSNs had higher betweenness centrality aver-

ges than the other 10 RSNs, and frontoparietal had significantly higher

etweenness than dorsal attention (all p < .001). The cingulo-opercular

etwork had the third highest average betweenness centrality scores, de-

pite having only modest degree centrality, thus suggesting that while

ingulo-opercular regions might not be the most highly connected re-

ions in cortex, these regions are nevertheless particularly important

or cortical communication. Note that while Power et al. (2013) showed

hat degree-based hubs in Pearson correlation networks are confounded

y the size of the functional communities the nodes belong to (i.e., the

umber of nodes in each RSN), in a critical control analysis we did not

nd significant correlations between community size and degree or be-

weenness centrality ( Fig. 3 k–n), suggesting that our measures of causal

entrality cannot be ascribed to the size of the RSNs in our analysis. 
7 
.6. Executive and attentional networks equally send and receive 

onnections 

Since causal graphs separate incoming and outgoing causal connec-

ions, we were additionally able to assess whether each RSN primar-

ly sent or received information. Most RSNs could be characterized as

ither primarily “senders ” (visual, somatomotor), or as primarily “re-

eivers ” (cingulo-opercular, auditory, default mode, posterior/ventral

ultimodal, and limbic/orbito-affective). However, a small number of

SNs were found to send and receive equal numbers of connections

frontoparietal, dorsal attention, ventral attention/language; Fig. 3 i). 

.7. Executive and attentional hubs are points of causal connectome 

ulnerability 

Our analyses up to this point have demonstrated that the frontopari-

tal, dorsal attention, and cingulo-opercular RSNs are highly central

ubs in the causal connectome. Based on previous reports, it is likely

hat the identified central hubs of the causal human connectome are also

oints of system-level vulnerability to insult. To test this hypothesis, we

onducted a series of simulated attacks on the causal connectomes pre-

ented in this study. For each RSN, we sequentially deleted nodes in that

SN from each subject’s cortical graph, and measured loss-of-function

ia percent change in global efficiency ( Latora and Marchiori, 2001 ;

ubinov and Sporns, 2010 ). Fig. 4 a shows the average of these network-

evel loss-of-function curves for all 442 subjects. As a summary measure

f the impact of nodal targeted attacks on each RSN, we took the av-

rage pointwise derivative of the global efficiency loss curve for each

ubject and RSN (plus random deletion, as a control analysis; Fig. 4 b).

esults indicated that the RSN loss functions differed significantly in

verage pointwise slope (Friedman test, p < .001). Post-hoc multiple

esting (Nemenyi test) indicated that the frontoparietal network had the

teepest loss-of-efficiency function, followed by the dorsal attention net-

ork. These RSNs had steeper loss functions than the other 10 RSNs (all

 < .001). Visual-1, cingulo-opercular, and posterior multimodal net-

ork also showed strong efficiency loss effects when lesioned. 

Counterintuitively, the virtual lesion analysis indicated that for the

uditory, ventral multimodal and orbito-affective networks the average

lobal efficiency increased as nodes were deleted. This is likely a result

f the very low connectivity of these networks, which have the three

owest degree and betweenness of the RSNs and are among the lowest

articipation in the connectome as well. This low global connectedness

ikely means that as nodes are removed the network generally becomes

ore efficient. In summary, the targeted attack analysis demonstrated

hat the hub RSNs we previously identified (frontoparietal, dorsal at-

ention, cingulo-opercular) are critical points of vulnerability in cortical

fficiency, and that loss-of-function (virtual lesions) in these RSNs im-

airs global cortical communication efficiency to a greater degree than

ther RSNs. 

.8. Comparison of GANGO causal connectivity graphs with Pearson 

orrelation graphs 

To examine how the cortical causal human connectome compares to

ore typical connectivity analyses (Pearson correlation graphs), we ran

he presented analyses using two sets of binarized correlation graphs.

he first set was proportionally thresholded at a 15% cost (that is, each

raph retained the 15% largest positive values). Proportional threshold-

ng was chosen to improve stability of measures over absolute thresholds

( Garrison et al., 2015 )), and the chosen 15% cost is in the middle of an

deal cost range for producing small-world graphs in Pearson correlation

etworks ( Achard and Bullmore, 2007 ; Bullmore and Bassett, 2011 ) and

s such is among the most typical thresholding procedures in the litera-

ure. The second set was thresholded to retain the same number of con-

ections as the subject-specific causal graph, thus matching the density
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Fig. 3. The most central hubs of the causal connectome cluster in executive and attentional networks. 

A–D: Median nodal centrality across n = 442 subjects, for each of 360 cortical nodes. Blue histogram indicates the distribution of median centralities for 1000 equally 

connected random graphs. 

E,F,G,H: Centrality values plotted on inflated cortical surfaces to visualize the anatomical locations of highly connected hubs. 

I: Average indegree and outdegree across the 12 RSNs. To determine whether networks primarily send or receive information, for each network we tested for 

differences between indegree and outdegree. Visual (Vis1 and Vis2) and somatomotor (SMN) networks could be categorized as primarily sending information; 

cingulo-opercular (COP), auditory (Aud), default mode (DMN), posterior and ventral multimodal (PMM and VMM), and orbito-affective/limbic (ORA) networks 

could be classified as primarily receiving information, and dorsal attention (DAN), ventral attention/language (VAN), and frontoparietal (FPN) networks equally sent 

and received information. Overall, the most connected RSNs were the dorsal attention and frontoparietal networks. Asterisks above violin plots indicate significance 

of the difference between indegree and outdegree for each network ( ∗ p < .05, ∗ ∗ p < .01, ∗ ∗ ∗ p < .001, n.s. = not significant). 

J: Average betweenness across the 12 RSNs. Overall, frontoparietal network participated in the highest number of short paths, followed by dorsal attention and 

cingulo-opercular networks. 

K–N: Control analyses ruled out the possibility that cortical hubs could be explained by the number of parcels in the RSN that each node belongs to. Blue line indicates 

a least-squares regression fit, and blue shading indicates the 95% confidence interval of the regression. 

8 
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Fig. 4. Executive and attentional hubs are points of causal network vulnerabil- 

ity. 

A: Loss of network efficiency following node deletion as a percentage of network 

global efficiency. The resulting efficiency loss curves are color-coded by RSN. 

As a visual aid, we plotted RSNs with the most central (i.e., hub-like) connec- 

tivity profiles from previous analyses (cingulo-opercular, frontoparietal, dorsal 

attention) with solid lines, and the remaining (i.e., less central or less hub-like) 

RSNs are plotted with dotted lines. Additionally, a random attack was carried 

out (black line) by deleting nodes chosen at random (rather than from a specific 

RSN). 

B: We calculated the average pointwise slope of the loss curve for each RSN, 

and compared the average pointwise slopes, thus quantifying how quickly the 
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9 
f the causal connectomes exactly. Detailed results of these comparison

nalyses are presented in the Supplement. 

Overall, this comparison suggests that Pearson correlation graphs

mphasize the importance of sensory regions and motor cortex as cor-

ical hubs, while causal connectivity graphs instead emphasize higher

ognitive regions, particularly frontoparietal and cingulo-opercular net-

orks (which did not exhibit hub-like connectivity in any analysis for

earson correlation graphs). We also found that the sparser set of cor-

elation graphs were very poorly connected – on average, over 40% of

odes were completely disconnected at this threshold. At this 2.25% (av-

rage) density, we also found that graphs were significantly less hub-like

han surrogate random graphs, suggesting that centrality-based hubs

reak down at this level of sparsity in Pearson correlation graphs. 

Furthermore, in 15% density Pearson correlation graphs we found

hat both degree and betweenness centrality were highly confounded by

he size of the RSN nodes belonged to, unlike in the causal graphs. This

as not the case for the sparser correlation graphs. These differences

etween Pearson correlation and causal connectomes were somewhat

ttenuated when using participation coefficient as a measure. However,

n the sparse 2.25% density correlation graphs, we were unable to es-

imate participation coefficient for the two least-connected networks

ventral multimodal, limbic/orbito-affective) due to extremely low lev-

ls of connectivity (zero in nearly all subjects). We also observed that

pplying the virtual lesion analysis to the 15% density Pearson corre-

ation graph resulted in many RSNs increasing global efficiency when

eleted. This effect was magnified for the sparser 2.25% density corre-

ation graphs. This is likely due to the much greater incidence of com-

letely unconnected nodes in thresholded Pearson correlation graphs,

s opposed to the well-connected causal graphs we generated using the

ANGO method. Note that unconnected nodes have this effect because

he global efficiency of a node is calculated as the inverse shortest path

number of edges) from that node to each other node in the network

 Latora and Marchiori, 2001 ). The global efficiency of the network is

hen the average of all nodal global efficiencies. An unconnected node

s defined to have an infinite path length and a global efficiency of zero

 Rubinov and Sporns, 2010 ) – thus, these unconnected nodes reduce the

verage global efficiency (connected nodes will always have global ef-

ciency > 0). It follows then, that the deletion of an unconnected node

emoves a zero from being averaged into the global efficiency score,

mproving the average network efficiency. 

. Discussion 

Functional connectivity analyses of the human cortex typically use

ndirected connectivity estimates, derived by computing Pearson corre-

ation coefficients between the time series of the hemodynamic signals

f individual brain regions (nodes). The need to extend functional con-

ectivity analyses to causal connectivity is recognized ( Reid et al., 2019 ;

mith, 2012 ), but data-driven methods for calculating high-dimensional

ausal graphs within single subjects have not been thoroughly tested

et. Here, we present an examination of the causal connectivity pat-

erns of the human cortex using a two-stage causal discovery machine

earning approach. Two-stage causal discovery methods break the graph

reation process into separate adjacency search and orientation phases.

amsey et al. (2014) and Sanchez-Romero et al. (2019) both used the

C algorithm ( Spirtes et al., 2001 ) for the adjacency search, and demon-

trated that non-Gaussian pairwise likelihood measures (particularly
ortical network loses efficiency when nodes from each RSN are deleted. Violin 

lots indicate the average slope for the efficiency loss function for each RSN (per 

ubject). 

: The cortical surface contains nodal values for change in network global effi- 

iency following deletion of individual cortical nodes (that is, the color of each 

ode represents the global efficiency loss when that node is deleted; cold colors 

ndicate gains to global efficiency when the node is deleted). 
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kew-based measures) could accurately identify correct edge orienta-

ions. We demonstrate the utility of a scalable version of these two-step

ausal discovery algorithms, which we call GANGO for convenience.

calability is achieved by substituting the PC adjacency search with

GES (Fast Greedy Equivalence Search; ( Ramsey et al., 2017 )), itself a

arallelized version of Greedy Equivalence Search ( Chickering, 2002 ),

hich was shown to produce high precision for adjacency search in

mith et al. (2011) . 

The causal connectomes produced by the GANGO approach were

uite different from those produced by the more typical Pearson corre-

ations - despite very low density, these graphs were fully connected in

early all cases. For this initial justification of the GANGO approach, we

sed the standard BIC score (penalty discount = 1) to penalize the con-

ectivity density of the produced graphs; notably, the FGES method can

e parameterized to produce sparser graphs with penalty discounts > 1,

nd to produce denser graphs with penalty discounts < 1. As such, future

pplications of the GANGO framework might capitalize on this flexibil-

ty to produce graphs with the desired density for the research question

nder investigation. Furthermore, GANGO networks did not exhibit any

elationship between RSN size (number of nodes) and degree central-

ty, unlike standard Pearson correlation-based graphs. This dependency

rises in correlation-based graphs whenever the graph exhibits a mod-

lar community structure, as explained in Power et al. (2013) . Specif-

cally, in cases where graphs exhibit community structure, a node in a

arger community would have a higher chance to form more connec-

ions simply because connections are more common within communi-

ies than between them. However, many of these connections will be

ndirect, and nodal correlations within a community will be high due

o indirect connections. Bayes net methods, on the other hand, enforce

parsity wherever possible via a Markovian screening-off property and

etain only direct connections while eliminating indirect connections

Spirtes et al., 2001). Thus, our results provide support for the viabil-

ty of the GANGO approach for providing unbiased centrality measures

rom resting-state fMRI data. 

Prominent hubs of the causal connectome overlap many regions

reviously identified by resting-state fMRI ( Achard et al., 2006 ;

uckner et al., 2009 ; Tomasi and Volkow, 2011 ; van den Heuvel and

porns, 2013 ; Zuo et al., 2012 ), with the GANGO method reliably re-

overing these network properties when applied on a single subject

evel. Importantly, control analyses indicated that nodal hub metrics

degree, betweenness centrality) were unconfounded by the size of the

SN that nodes belonged to. In contrast, degree and betweenness cen-

rality were strongly confounded by RSN size for thresholded correla-

ion graphs (Supplement). Overall, we found prominent causal connec-

ivity hubs and points of vulnerability of the causal connectome in dor-

al attention network (DAN), frontoparietal network (FPN) and cingulo-

percular network (COP), with each of these hub networks showing dis-

inctly different connectivity profiles. 

The dorsal attention network (DAN) exhibited theoretically inter-

sting properties that contributed to its high level of connectivity. In

ur analysis, DAN had among the greatest diversity of connections with

ther RSNs (measured using participation coefficient), as well as having

verall high connectivity (measured using degree centrality) and par-

icipating in many efficient paths (measured using betweenness central-

ty). Our analysis of the inter-RSN connectivity structure of the cortical

ausal connectome revealed that DAN owed its high centrality to its role

n receiving information from visual networks, processing that informa-

ion, and then transmitting information to multimodal association net-

orks (posterior/ventral multimodal association networks, FPN). This

s in line with long-standing evidence that DAN plays an important role

n top-down visual selective attention ( Corbetta and Shulman, 2002 ;

ossel et al., 2014 ). While we found that causal connections usually

rogressed from visual to dorsal attention networks, a large proportion

f these connections still progressed in the opposite direction as well.

hus, our results support a role of DAN in top-down control over visual

ystems as well, providing further evidence that the dorsal attention
10 
etwork supports both bottom-up sensory integration and top-down at-

entional control ( Long and Kuhl, 2018 ). 

The cingulo-opercular network (COP) was found to mediate many ef-

cient paths in the cortex (betweenness) and shared a large diversity of

nter-RSN connections (participation coefficient) but did not have par-

icularly high connectivity (degree). COP has a role in maintaining task

ets, initiating goal-directed behaviors, and consolidating motor pro-

rams ( Dosenbach et al., 2008 , 2006 ; Fair et al., 2007 ; Newbold et al.,

021 ). In our consensus network structure, we found that COP received

ignificant connections from the somatomotor network, sent significant

onnections to the orbito-affective (reward) network, and was bidirec-

ionally connected to FPN. The uncovered functional connectivity be-

ween the reward networks and COP is in line with evidence that COP

as a role in coordinating the response of brain reward-related regions

 Huckins et al., 2019 ), and the connectivity between COP and somato-

otor networks corroborates evidence that COP plays a role in consoli-

ation, planning, and plasticity of motor regions ( Newbold et al., 2021 ).

onnectivity between COP and somatomotor networks also increases

hrough development and is linked to the development of improved

ognitive control ( Marek et al., 2015 ). Finally, COP was found to be

ightly bidirectionally connected with frontoparietal network, echoing

vidence that these RSNs work together as dual cognitive control net-

orks ( Dosenbach et al., 2008 ; Fair et al., 2007 ; Gratton et al., 2018 ). 

Across all analyses, we found a critical role of frontoparietal execu-

ive network (FPN) connectivity. This represents an important point of

greement between our causal network results and recent advances in

nderstanding the role of the FPN in overall function, as well as an im-

ortant result that we did not find with traditional Pearson correlation

raphs (Supplement). Due to its central position, FPN shared the great-

st diversity of inter-RSN connectivity in the consensus graph, including

ignificant received connections from DAN, significant sent connections

o the ventral attention, orbito-affective, and default mode networks,

nd bidirectional connections with COP. Previous studies demonstrate

hat FPN flexibly shifts its connectivity patterns to fulfill task demands,

hile still retaining high correlations with its resting-state connectiv-

ty ( Cocuzza et al., 2020 ; Cole et al., 2013 ; ( Crittenden et al., 2016 )),

nd another recent study demonstrated that resting-state network con-

ectivity in FPN predicts transfer of task-relevant information through

istributed brain circuitry ( Ito et al., 2017 ). Overall, our finding that

PN nodes are, on average, the most highly central nodes in the causal

uman connectome is consistent with a theoretical role of FPN as a flexi-

le executive coordinator of overall brain function (( Assem et al., 2020 );

osenbach et al., 2006 ; ( Duncan, 2010 ); Fair et al., 2007 ; ( Marek and

osenbach, 2019 )). 

This is also consistent with recent control systems perspectives on

rain connectivity, which have suggested that FPN has a particular role

n shifting brain network configuration into difficult-to-reach cognitive

tates ( Gu et al., 2015 ). The causal connectivity from FPN to default

ode network (DMN) deserves particular attention. These RSNs are typ-

cally anticorrelated during cognition (FPN activity increases and DMN

ctivity decreases), a finding that replicates in experimental paradigms

ncluding attention ( Hellyer et al., 2014 ), working memory ( Kelly et al.,

008 ; Murphy et al., 2020 ), and cognitive reasoning ( Hearne et al.,

015 ). We found that the connectivity between FPN and DMN prefer-

ntially flows from FPN to default mode network, suggesting that FPN

ight have an executive role in “turning off” or inhibiting the DMN

n response to the need for control. The revealed causal hub role of

he FPN is among the most important contributions of this study, as

ypically thresholded Pearson correlation graphs do not show hub-like

onnectivity in FPN (Supplement), despite ample theoretical and exper-

mental evidence that the frontoparietal network is critical for overall

rganization and control of the connectome. 

Our virtual lesion analysis of the causal human connectome suggests

 potential application of the GANGO method to understand brain im-

airments in psychiatric disorders. A previous analysis ( Crossley et al.,

014 ) demonstrated that virtual lesions to the hubs of the human con-
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ectome impair network global efficiency more than virtual lesions

f non-hub brain nodes. The authors then followed this with a meta-

nalysis demonstrating that the hubs of the human connectome were

ore likely to contain gray matter lesions than non-hub regions across

ine different disorders, including schizophrenia and Alzheimer’s dis-

ase. Many psychiatric and neurological disorders are associated with

educed brain global efficiency, including prenatal alcohol exposure

 Wozniak et al., 2013 ) and fetal alcohol syndrome ( Rodriguez et al.,

021 ), schizophrenia ( Hummer et al., 2020 ), ADHD ( Wang et al., 2020 ,

021 ), generalized anxiety disorder ( Guo et al., 2021 ), heavy smoking

 Lin et al., 2015 ), and major depressive disorder (( Meng et al., 2014 );

ang et al., 2017 ; Zhi et al., 2018 ), among others. Additionally, pre-

rontal tDCS for alcohol use disorder increased brain network global ef-

ciency ( Holla et al., 2020 ), suggesting that normalizing network global

fficiency might contribute to improved treatment outcomes from neu-

omodulation therapy. Furthermore, mindfulness-based cognitive ther-

py in mood-dysregulated adolescents resulted in an increase in brain

lobal efficiency, especially within frontoparietal and cingulo-opercular

etworks ( Qin et al., 2021 ). GANGO causal connectomes, but not stan-

ard Pearson correlation connectomes, emphasize hub connectivity in

rontoparietal and cingulo-opercular networks, as well as suggesting

hat these networks are points of vulnerability with regards to their

mpact on global network integration when lesioned. Thus, the causal

uman connectome might explain the high incidence of frontoparietal

ysfunction and global efficiency reduction in patient groups, as well as

redicting the therapeutic effects of frontoparietal stimulation in various

sychiatric dysfunctions. As such, the GANGO framework might provide

 powerful new tool to understand, predict, and ultimately treat brain

etwork dysfunction in psychiatry. 

The current investigation delivers a powerful new framework for

uickly computing ( ∼30 s per connectome on a personal laptop with

ix cores and 32 Gb Ram) high-dimensional causal connectivity graphs

rom observed brain data as well as providing important insight into

he hub structure of the causal human connectome, but it is not without

imitations. One potential limitation lies in the use of a relatively coarse

 n = 12) RSN partition for summarizing cortical hubs ( Ji et al., 2019 ).

owever, the use of a published RSN partition facilitates interpretation

f results, as the results of higher-dimensional (e.g., ICA-based) RSN par-

itions are often difficult to interpret and require abstraction via multi-

imensional statistics to summarize. In the Supplement we report the

onsensus network structure of these same data using a larger number

f RSNs [the 22 neuroanatomical regions reported in the supplement of

lasser et al. (2016a )]. The consensus structure of connectivity between

hese 22 regions also shows an orderly progression of information from

isual sensory regions to the dorsal and ventral visual streams, through

he parietal association cortex, and into the motor and prefrontal cor-

ex. The organization of this more granular causal network also aligns

ell with recent perspectives on the hierarchical organization of the pre-

rontal cortex ( Badre and Nee, 2018 ). An additional limitation of these

esults is that our method for calculating causal connectivity is unable

o discover two-cycles (direct feedback cycles, where A > B and B > A ).

hile two methods have been proposed for fMRI connectivity that are

heoretically capable of recovering two-cycles ( Sanchez-Romero et al.,

019 ), these methods have never been used in an applied research con-

ext, and often perform worse than the skew-based orientation method

e use ( Sanchez-Romero et al., 2019 ). Notably, the RSkew orientation

ethod we adopt for the GANGO framework can discover 3-cycle or

reater feedback loops, so only direct feedback loops remain unmea-

ured. Nevertheless, as methods for more accurately assessing feedback

ycles from fMRI are developed, the framework we implement in the

urrent investigation could be expanded to include such methods. Fi-

ally, we note that, while every single subject in this study had signif-

cantly skewed BOLD distributions (with reference to random Gaussian

ata), this is not guaranteed to be the case in all datasets. As some com-

on preprocessing steps (aggressive temporal filtering) can introduce

aussian trends into BOLD data, we recommend that application of the
11 
ANGO framework should only follow careful examination of BOLD

kewness, to ensure that the assumptions of the methods are adequately

et. 

. Conclusion 

Using a causal discovery machine learning framework, we demon-

trate that the most centrally connected hubs of the cortical connectome

re situated in the frontoparietal, dorsal attention and cingulo-opercular

etworks. In particular, the causal human connectome highlights high

onnectivity of the frontoparietal network with all other higher cogni-

ive RSNs. The discovered hub role of the frontoparietal network in the

ausal human connectome is especially attractive, as brain-based ther-

pies for psychiatric conditions typically impact or directly stimulate

odes in the frontoparietal network ( Belsher et al., 2021 ; Ferrarelli and

hillips, 2021 ; Fitzgerald, 2021 ; Song et al., 2019 ; Voigt et al., 2021 ;

hang et al., 2021 ; Zilverstand et al., 2017 , 2016 ). Previously, we even

emonstrated that connectivity in the frontoparietal network has down-

tream causal effects on the severity of alcohol use disorder ( Rawls et al.,

021 ). As it is applied on a single-subject basis, the GANGO method

ould potentially even enable individualized causal connectivity-based

euromodulation targeting. Thus, the current study sets the stage for fu-

ure applications of data-driven causal connectivity applications in psy-

hiatry. 
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