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Fractals are self-similar patterns that repeat at different scales, the complexity of which are expressed as a frac- 

tional Euclidean dimension D between 0 (a point) and 2 (a filled plane). The drip paintings of American painter 

Jackson Pollock (JP) are fractal in nature, and Pollock’s most illustrious works are of the high-D (~1.7) category. 

This would imply that people prefer more complex fractal patterns, but some research has instead suggested 

people prefer lower-D fractals. Furthermore, research has suggested that parietal and frontal brain activity tracks 

the complexity of fractal patterns, but previous research has artificially binned fractals depending on fractal 

dimension, rather than treating fractal dimension as a parametrically varying value. We used white layers ex- 

tracted from JP artwork as stimuli, and constructed statistically matched 2-dimensional random Cantor sets as 

control stimuli. We recorded the electroencephalogram (EEG) while participants viewed the JP and matched 

random Cantor fractal patterns. Participants then rated their subjective preference for each pattern. We used 

a single-trial analysis to construct within-subject models relating subjective preference to fractal dimension D, 

as well as relating D and subjective preference to single-trial EEG power spectra. Results indicated that partici- 

pants preferred higher-D images for both JP and Cantor stimuli. Power spectral analysis showed that, for artistic 

fractal images, parietal alpha and beta power parametrically tracked complexity of fractal patterns, while for 

matched mathematical fractals, parietal power tracked complexity of patterns over a range of frequencies, but 

most prominently in alpha band. Furthermore, parietal alpha power parametrically tracked aesthetic preference 

for both artistic and matched Cantor patterns. Overall, our results suggest that perception of complexity for artis- 

tic and computer-generated fractal images is reflected in parietal-occipital alpha and beta activity, and neural 

substrates of preference for complex stimuli are reflected in parietal alpha band activity. 
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. Introduction 

Fractals are self-similar patterns that repeat at different scales

 Falconer, 2014 ; Mandelbrot, 1982 ). Mandelbrot, who was the first to

haracterize fractals, famously wrote: “Clouds are not spheres, moun-

ains are not cones, coastlines are not circles, and bark is not smooth,

or does lightning travel in a straight line ” ( Mandelbrot, 1982 ). As al-

uded by this quote, fractals are prevalent in nature, ranging from sea

nemones, to galaxies, to the structure of our DNA. Unlike conven-

ional psychophysics and perception stimuli, fractals are non-Euclidian

nd structurally complex, with each of the parts being similar to the

hole. This allows for insight into configural (as opposed to featural)

rocesses such as natural scene perception ( Zahedi & Zeil, 2018 ), spatial
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avigation ( Juliani et al., 2016 ), Gestalt grouping principles ( Farkas &

ajnal, 2013 ), and object recognition in computer vision and machine

earning algorithms ( Domenech et al., 2020 ; Tan & Yan, 1999 , 2000 ;

ang et al., 2016 ) and in humans ( Bies et al., 2016 ; Taylor et al., 2017 ).

ractals hold potential for such areas of research because their qualities

e.g. symmetry and proximity) yield the classic Gestalt principle of “fig-

ral goodness ” (i.e. the degree to which a pattern can be organized into

 coherent object). The geometric complexity of fractal patterns can be

uantified by their dimension D, which falls between Euclidean dimen-

ions. For images, the D parameter ranges between D = 1 (a line) and

 = 2 (a filled plane). Dimensions closer to 2 indicate a higher degree of

omplexity, and generally cover a larger percentage of the plane (e.g.,

s pattern repetitions occur to a non-fractal line of D = 1, the D value

oves closer to 2, and the line will occupy more space). However, it is

ossible for some 2D fractal images to have D < 1, when the patterns are

parse enough to constitute a point rather than a line (non-continuous or

dust ” fractals) ( Falconer, 2014 ). Given the controllability of complexity
il 2021 
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n fractal patterns and their relation to more general theories, fractals

re particularly useful stimuli for research on human perception and

esthetic preference. 

In the early 1940s, the abstract artist Jackson Pollock began creat-

ng his infamous splatter paintings by using a paintbrush to drip and

ing paint onto long rectangles of yachting canvas. An analysis of Pol-

ock’s splatter paintings confirmed that they have fractal characteristics

 Taylor et al., 1999 ). Pollock’s technique evolved over time, consisting

f a “preliminary phase ” that yielded low-D fractal images (e.g. Untitled ,

945. D = 1.10), a “transitional phase ” wherein resulting dimensions in-

reased (e.g. Number 14 , 1948, D = 1.45), and a “classic ” period, where

e mastered the technique and the D values of his works lingered around

.7 ( Taylor et al., 2002 ). During the classic period, he also painted Un-

itled (1950), where the complexity of his works peaked at D = 1.89.

owever, he quickly erased this design (which was painted on glass)

nd his following paintings scaled back again to D = 1.7. This sug-

ests that he desired to generate fractal patterns with D ~ 1.7, spending

early 10 years approaching, passing, then returning to this dimension

 Taylor et al., 2007 ). There is some evidence that people aesthetically

refer fractals within the D range of 1.3 – 1.5 (as opposed to outside of

his range) ( Taylor et al., 2011 ; Viengkham & Spehar, 2018 ) [although

ee ( Bies, Blanc-Goldhammer, et al., 2016 )]. This would suggest that

arlier works by Pollock, prior to his classic period, should have greater

isual appeal. However, the paintings from his classic period remain

s the most illustrious, suggesting that higher-D fractals might capture

ttention more efficiently than lower-D fractals. Taylor and colleagues

2011) speculate that Pollock found the “visually restful ” mid-D range

o be too simple and bland, and that he desired to keep his audience

ngaged with visually complex pieces. 

Noninvasive neuroscience methods are a promising avenue to un-

erstand human perceptual and aesthetic responses to fractal patterns

uch as Pollock’s art. In particular, electroencephalography (EEG) is

 powerful technique that yields precise timing of rhythms underly-

ng cognitive processing. EEG is composed of activity that can be di-

ided into delta (~1-3 Hz), theta (~4-8 Hz), alpha (~9-14 Hz), beta

~15-30 Hz) and gamma (~31 + Hz). Activity in different frequency

ands supports stimulus coding, attention, and communication across

eural ensembles ( Lopes da Silva, 2013 ). Delta oscillations are related

o motor demands in cognitive tasks ( Harmony, 2013 ; Huster et al.,

013 ; Rawls et al., 2020 ; Stefanics et al., 2010 ) and to delivery of

einforcement-related outcomes ( Bernat et al., 2015 ; Cavanagh, 2015 ;

awls & Lamm, 2021 ), while theta oscillations are more generally

elated to the need for cognitive control ( Cavanagh & Frank, 2014 ;

ohen & Cavanagh, 2011 ; Cooper et al., 2015 ; Nigbur et al., 2011 ).

lpha-frequency EEG broadly relates to internally-focused attention

 Benedek et al., 2014 ; Knyazev et al., 2011 ; Ray & Cole, 1985 ), and

as a role in creative experience ( Stevens & Zabelina, 2019 ). Beta-

requency EEG is associated with sensorimotor brain activity includ-

ng vision ( Aissani et al., 2014 ; Battaglini et al., 2020 ; Gola et al.,

013 ; Piantoni et al., 2010 ) and motor output ( Fischer et al., 2018 ;

challer et al., 2017 ; Zaepffel et al., 2013 ). Finally, gamma oscillations

re a marker of local neural ensemble synchronization, and might serve

o bind together the features of a stimulus ( Fries, 2009 ; Fries et al., 2007 )

unfortunately, gamma and higher frequencies have low signal-to-noise

atio in noninvasive human EEG and are difficult to detect without op-

imized equipment ( Cohen, 2014 ; Muthukumaraswamy & Singh, 2013 ).

Based on the aforementioned results, we might expect a role for beta

requencies in visual perception of fractal complexity and we might ex-

ect a role of alpha band activity in attention, evaluation, and aesthetic

esponses to fractal imagery. Only a few previous studies have used

EG to examine human brain activity during appraisal of fractal stim-

li. Hagerhall and colleagues ( Hagerhall et al., 2015 ) found that viewing

id-D statistical fractals (as opposed to exact fractals of the same dimen-

ion) produced the most alpha EEG activity. Hagerhall and colleagues

 Hagerhall et al., 2008 ) found that fractal patterns of D = 1.3 produced

he highest alpha and delta response in the frontal region, while con-
2 
urrently producing the highest beta response in the parietal region.

everal other studies have examined neural responses to fractal stimuli

sing fMRI ( Isherwood et al., 2017 ; Rieger et al., 2013 ); however, fMRI

echniques are unable to capture the fine temporal scale of perceptual

rain processing due to the sluggish nature of the BOLD response. 

In the present study, we recorded EEG while participants viewed and

rovided subjective ratings to statistically controlled artistic fractals (bi-

arized Jackson Pollock images) and computer-generated fractals (ran-

om Cantor sets) with fractal dimension ranging parametrically from

 = 1.10 to 1.89. We used a whole-scalp, single-trial modeling approach

o examine brain activity that tracked the complexity of, and prefer-

nce for, patterns within single subjects. Based on the illustriousness of

ackson Pollock’s high-D paintings, we hypothesized that participants

ould prefer artistic fractals with higher D to those with lower D. We

redicted that alpha and beta activity over occipital and parietal cor-

ex would track the complexity of fractal patterns, and that preference

or fractal patterns would be reflected in alpha activity in frontal and

arietal areas. 

. Methods 

.1. Participants 

Fifty-one students at the University of Arkansas completed

he pattern viewing study after providing informed consent (IRB

1902179495). Students were compensated for study completion with

ourse credit in introductory psychology classes. Six participants were

xcluded due to data acquisition issues, and one additional participant

as excluded for noncompliance (they gave the same subjective rat-

ng to every image), leaving forty-four participants for all analyses. See

able 1 for self-reported gender, age, and race demographics of the sam-

le; included and excluded samples did not differ in gender, age, or race

all p > .2). 

.2. Stimuli and task 

Participants completed a pattern viewing and subjective rating task

hile scalp EEG was recorded. During the viewing task, 90 binary JP

mages were presented, interspersed with 90 random Cantor fractals.

ll fractal stimuli subtended approximately 11 ̊ × 11 ̊ of visual angle.

ubjects viewed each of 180 patterns for 4 seconds each, then rated

ach image based on personal preference for the pattern using keyboard

eys 1 ( dislike ) to 9 ( like ). A fixation cross lasting between 2 and 3 sec-

nds (jittered) was presented between each stimulus (patterns and rating

creens). The fractal viewing and rating task required approximately 45

inutes to complete. 

Each pattern was a two-dimensional fractal pattern stimulus that

as either derived from a binarized layer of a Jackson Pollock (JP)

rip painting or developed algorithmically as a two-dimensional ran-

om Cantor set. White layers of drip paintings were provided by Taylor,

.P. as used in ( Taylor et al., 2007 , 2011 ). The full process of extract-

ng these fractal layers from scans of the artwork is beyond the scope

f the article, as it is not our own original work; we refer the reader to

 Taylor et al., 2007 , 2011 ) for an in-depth description of the layer ex-

raction process. Briefly, each art piece consists of multiple different col-

red layers. Separation of each differently colored layer was performed

y identifying the RGB range for that layer and filtering the scanned

rtwork accordingly, then binarizing the resulting filtered image. This

rocedure resulted in several layers from each piece of art, each with

heir own respective fractal dimension. As described in ( Taylor et al.,

007 ), these layers together span a wide range of fractal dimensions

etween 1 and 2, and as such are well-suited for use as stimuli in a

arametric design as employed here. Random Cantor sets were gener-

ted as a set of 1s that were divided into subsets, and each subset multi-

lied by 0 with probability p . Thus, this produces a binary “dust ” pattern

ith white features and black “holes ” in the dust. The fractal dimension
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Table 1 

Self-reported gender, age, and race for included and excluded participants. NR = not reported. 

Demographics Options Total N Included Excluded Included-Excluded Difference 

Gender M 29 26 3 𝜒2(1) = 1.06, p = .41 

F 19 15 4 

NR 3 3 0 

Race White 37 33 4 𝜒2(4) = 4.80, p = .27 

Black/African-American 3 2 1 

Asian/Asian-American 5 3 2 

Multiracial/Other 3 3 0 

NR 3 3 0 

Age Mean 20.04 20.02 20.14 t (46) = 0.13, p = .90 

Standard Deviation 2.20 2.32 1.46 

Fig. 1. A: Timing and design of the fractal pattern viewing and rating task (pattern in diagram is scaled up for visibility). B: Distribution of fractal dimensions for 

the Jackson Pollock (JP) white layers employed in the current study with three example patterns. C: Distribution of fractal dimensions for the random Cantor sets 

employed in the current study with three example patterns. 
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f the resulting pattern can be controlled by changing the probability

alue p . Fractal dimensions of the images were calculated using the drip

imension (DD) statistic as described in Taylor and colleagues (2011),

herefore accurately characterizing low-dimensional fractality resulting

rom drip layers in Jackson Pollock paintings. This method computes the

ommon box-counting dimension across a range of box sizes for each

mage, and determines a local minimum of the log-log slope of the re-

ulting box size × dimension function, with calculated DD ranging from

.10 – 1.89. See Fig. 1 for a diagram of the pattern viewing task, fractal

mage statistics, and examples of the stimuli used for the current study.

.3. EEG recording and processing 

Continuous EEG data were recorded using a Biosemi ActiveTwo sys-

em (Biosemi B.V., Amsterdam, The Netherlands). Sixty-four sensors

ere mounted in an elastic cap, positioned according to the Interna-

ional 10/20 system. Vertical eye movements were recorded from two

hannels placed immediately beneath each eye (VEOG), and horizontal

ye movements were recorded from two channels placed at the outer

anthi of the eyes (HEOG). Unlike most other EEG systems, the Biosemi
3 
ystem measures the reference-free voltage between each sensor and a

ommon sense mode (CMS) sensor, and all referencing is accomplished

ffline. 

Continuous data were imported into Matlab and processed using

EGLAB 14 ( Delorme & Makeig, 2004 ). Data were rereferenced to linked

astoids, low-pass filtered at 35 Hz (transition band: 30.625 – 39.375

z; chosen to avoid filtering out any activity below 30 Hz) using a zero-

hase FIR filter, downsampled to 125 Hz with anti-aliasing, and high-

ass filtered at .6 Hz (transition band: .3 - .9 Hz; chosen to avoid fil-

ering out any activity above 1 Hz) using a zero-phase FIR filter. Bad

hannels were detected and removed using EEGLAB functions; channels

ere removed if the joint probability of the channel given the observed

ata was more than 3 standard deviations from the expected probability.

ad channels were not interpolated before running Independent Compo-

ent Analysis (ICA). Data were epoched into 5 second trials surrounding

attern presentation (-1 second before to 4 seconds after). Infomax ICA

 Makeig et al., 1996 ) was computed on the epoched data. 

As our study included a long stimulus viewing time, and partici-

ants were encouraged to thoroughly inspect each stimulus, we used

trict criteria to ensure cleaning of ocular artifacts from our data. This
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as accomplished using several procedures, including the use of AD-

UST to detect ocular artifacts with four different measures: 1) spatial

verage distances, 2) spatial variance differences, 3) maximum epoch

ariances, and 4) spatial eye differences, measures which were found

n Mognon et al. (2011) to have high levels of effectiveness for re-

oval of ocular artifacts from the EEG. We applied additional crite-

ia in SASICA to optimize detection of ocular artifact, via correlation

f component timecourse with H/VEOG channel timecourses. As our

ecording setup used two vertical and two horizontal EOG sensors, SA-

ICA automatically used the differences of H/VEOG channels to in-

rease the signal-to-noise ratio for detection of saccade components in

he EEG. The application of SASICA and ADJUST together was shown

n ( Chaumon et al., 2015 ) to detect nearly 100% of saccades in each

raining dataset, and as such is currently considered state-of-the-art in

etection and rejection of eye movement components in the EEG. Addi-

ionally, since muscular artifact can appear as higher-frequency EEG ac-

ivity ( Muthukumaraswamy, 2013 ), we detected ICA components with

ow temporal autocorrelation and removed them, as this has been shown

o be particularly sensitive for detection of muscular artifact in the EEG.

etected artifactual components were removed. Data were then epoched

nto 4-second non-overlapping windows surrounding presentation of

ach pattern (0 seconds before to 4 seconds after). The epoch mean was

emoved from individual epochs, and remaining artifacts were detected

s epochs containing voltage values + - 125 microvolts. Finally, channels

hat were previously removed were spherically interpolated. 

.4. EEG power spectral analysis 

EEG were analyzed using power spectral analysis. One-sided single-

rial power spectra were calculated using Welch’s method (MATLAB

welch() function). We used default window and overlap parameters

8 segments with 50% overlap), and a 250-point discrete Fourier trans-

orm (providing frequency resolution of 0.5 Hz). Data were converted to

ower spectral density (PSD) using a decibel transform (10log10( data )),

nd frequencies from 1 to 30 Hz (in 0.5 Hz steps) were returned for fur-

her analysis. All PSD analyses were conducted on the resulting within-

ubject channel × frequency × trial matrix of PSD values. 

.5. Single-trial analysis of behavior and brain responses to fractal patterns

As EEG data frequently exhibit departures from normality, in par-

icular at the single-trial level ( Cohen, 2014 ), and since our rating data

ere rank-ordered, we used non-parametric Spearman correlations for

ur single-trial analyses of ratings and EEG-PSD. While previous single-

rial analyses have generally used Spearman correlations, it is possible

hat the relationship between fractal dimension and preference might

e nonmonotonic, and thus not adequately captured by Spearman cor-

elations. However, in all cases we found that Spearman correlations

rovided a better description of the data than a quadratic regression

S1). Group-level significance of within-subject single-trial Spearman

orrelations was analyzed by applying t -tests (with multiple compari-

on correction, in the case of PSD data). 

Behavioral analysis was conducted within single subjects to assess

hether individual preferences were related to pattern fractal dimen-

ion. Within each subject, we calculated Spearman correlations between

he fractal dimension of the image and the rating of preference the sub-

ect assigned to the image. This was done separately for the JP and

antor image stimuli. We then tested the between-subject significance

f these correlations (after normalization via Fisher’s z-transform) us-

ng two one-sample t -tests. We also compared within-subject correla-

ions between fractal dimension and preference using a paired-sample

 -test. Finally, given previous reports that there might exist subgroups

f individuals with different fractal dimension-aesthetic preference re-

ationships ( Bies, Blanc-Goldhammer, et al., 2016 ; Spehar et al., 2016 ;

treet et al., 2016 ), we tested for this possibility by clustering individ-

als on the basis of within-subject correlations between fractal dimen-
4 
ion and rating (two observations per subject). Note that we clustered

n within-subject correlations because our sample size could not sup-

ort clustering directly on ratings for stimuli of different fractal dimen-

ions (180 total observations) ( Dolnicar et al., 2014 ). For this analysis

e fit Gaussian mixture models (GMMs; latent profile analysis) for one

nd two components to the dimension-preference correlation data. The

est-fitting model was selected using the Bayesian Information Criteria

BIC) ( Schwarz, 1978 ). 

Single-trial analyses of power spectral density (PSD) EEG were also

onducted within individual subjects. For each point (sensor × fre-

uency), Spearman correlations were computed across trials between

ingle-trial EEG power spectra and fractal dimension. To facilitate con-

ition comparisons, correlations were run separately for JP and Can-

or images. This resulted in four sets of Spearman correlations for each

articipant (JP dimension, JP rating, Cantor dimension, Cantor rating),

hich were normalized via Fisher’s z-transform prior to mass univari-

te significance testing. Significance of single-trial correlations was as-

essed by using permutation-based cluster corrected ( Maris & Oosten-

eld, 2007 ) one-sample t-tests against a null hypothesis of zero correla-

ion, in order to obtain sets of contiguous data points that responded to

arametric variations in complexity and rating of fractal images. As an

nherent subjective choice in the use of cluster correction is the alpha

evel at which neighboring points are set to join as a cluster ( Maris &

ostenveld, 2007 ), we used the implementation of threshold-free clus-

er enhancement (TFCE) described in ( Mensen & Khatami, 2013 ) with

000 permutations to obtain clusters of significance without any sub-

ective selection of cluster joining threshold. We used this same method

o compare single-trial fractal dimension and rating correlation maps

btained for JP and Cantor images using paired-samples t -tests. Addi-

ionally, since TFCE provides a test value for each point (unlike more

raditional testing), we calculated effect sizes for between-subject EEG-

SD significance tests (Cohen’s d). 

. Results 

.1. Image statistics 

A Wilcoxon rank-sum test indicated that fractal dimensions did not

ignificantly differ between JP and Cantor images, z = -0.95, p = .34,

onfirming that our comparison images were properly matched in their

ractal dimensions. To rule out other potential low-level confounds in

ur results, for each image we also calculated a summary statistic de-

cribing the distribution of energy across spatial frequencies according

o ( Eskicioglu & Fisher, 1995 ). We confirmed that within each type of

mage, distribution of spatial frequencies was uncorrelated with frac-

al dimension (JP images: p = .22, Cantor images: p = .12). As all of

ur primary analyses used the fractal dimension of each image as the

rimary variable of interest, this confirms that our results cannot be ex-

lained by a systematic relationship of spatial frequency with fractal

imension. We note that all images were also implicitly controlled for

ontrast, Michelson contrast ( Michelson, 1927 ) = 1 for all images, since

ll images were black-and-white. 

.2. Single-trial behavioral results 

Results of single-trial Spearman correlations indicated that for both

P and Cantor images, most subjects rated higher fractal dimension im-

ges more favorably than lower fractal dimension images ( Fig. 2 ), and

orrelations were significantly non-zero and positive for both JP and

andom Cantor images (both p < .001). See Fig. 2 for a summary of the

ingle-trial relationships between fractal dimension and preference rat-

ngs, including within-subject correlation values and group-level t -tests

or significance. Across subjects, the fractal dimension-rating correla-

ion was stronger for Cantor images, compared to JP images ( p = .007).

e also calculated a Spearman correlation between the (within-subject)

orrelation coefficients for each type of image. This result indicated that
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Fig. 2. Swarm plots of within-participant Spearman correlations between 

the fractal dimension and subjective preference (plotSpread.m function, 

https://www.mathworks.com/matlabcentral/fileexchange/37105-plot-spread- 

points-beeswarm-plot ). Points represent single-subject correlations of fractal 

dimension and rating, error bar represents ± 1 SEM. Horizontal spread of 

points indicates the density of observations at that level of y (akin to a vertical 

histogram, or a violin plot). Dotted lines represent within-subject significance 

level (Spearman rho = ± .207). 
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cross subjects, within-subject correlations between fractal dimension

nd rating were positively correlated (Spearman’s rho = .47, p = .001);

s such, subjects that preferred high-D JP images also tended to pre-

er high-D Cantor images. Latent profile analysis indicated that a one-

omponent model provided the best fit to our data (S1), and as such we

roceed in the remainder of our analysis without dividing participants

nto subgroups. 

.3. Single-trial EEG correlates of fractal dimension perception 

Single-trial power spectral analysis of EEG was used to examine

requency-specific representations of fractal dimension for both JP and

andom Cantor images. For JP images, increasing fractal dimension cor-

elated with decreased alpha power predominately over left occipital

nd parietal sensors (maximal at sensor O1, 14 Hz, t (43) = -5.41, TFCE-

orrected p = .001), an effect that was associated with a large effect size

Cohen’s d = 0.82). Increasing fractal dimension of JP images also corre-

ated with decreased beta power, predominately over occipital and pari-

tal sensors (maximal at sensor P8, 21 Hz, t (43) = -5.15, TFCE-corrected

 = .004), an effect that was associated with a medium-large effect size

Cohen’s d = 0.77). 

For random Cantor images, we found a broadband decrease in spec-

ral power with increasing fractal dimension. This effect was present

n delta, theta, alpha, and beta frequency ranges, and was most promi-

ent over parietal-occipital sensors for all frequencies. Delta effects were

aximal at sensor POz (3 Hz, t (43) = -3.43, TFCE-corrected p = .017),

nd were associated with a medium effect size (Cohen’s d = 0.52). Theta

ffects were most prominent at sensor P8 (7 Hz, t (43) = -3.91, TFCE-

orrected p = .003), and were associated with a medium effect size (Co-
5 
en’s d = 0.59). Alpha effects were maximal over sensor O2 (13.5 Hz,

 (43) = -6.18, TFCE-corrected p < .001), and were associated with a

arge effect size (Cohen’s d = 0.94). Beta effects were most prominent

ver sensor P3 (18 Hz, t (43) = -4.81, TFCE-corrected p = .003), and were

ssociated with a medium-large effect size (Cohen’s d = 0.72). Single-

rial PSD-fractal dimension correlations did not significantly differ for

P and Cantor images, all p > .1. See Fig. 3 for a summary of PSD-fractal

imension correlations, and see Fig. 5 for a summary of effect sizes. 

.4. Single-trial power spectral correlates of fractal image preference 

Single-trial EEG power spectral analysis was used to probe

requency-specific representations of aesthetic preference for both JP

nd random Cantor images. For JP images, only power at alpha fre-

uencies correlated significantly with preference for fractal patterns.

his effect was maximal over sensor P3 at 13 Hz ( t (43) = -4.13, TFCE-

orrected p = .036), and was associated with a medium effect size (Co-

en’s d = 0.62). For random Cantor images, alpha frequencies correlated

ith preference ratings over a cluster of parietal channels (maximal at

ensor O2, 13.5 Hz, t (43) = -5.15, TFCE-corrected p = .006), an effect

hat was associated with a medium-large effect size (Cohen’s d = 0.78).

eta frequencies correlated with preference ratings over a cluster of

rontal channels (maximal at sensor Fz, 16.5 Hz, t (43) = -3.59, TFCE-

orrected p = .023), an effect that was associated with a medium effect

ize (Cohen’s d = 0.55). Single-trial PSD-preference correlations did not

ignificantly differ for JP and Cantor images, all p > .1. See Fig. 4 for a

ummary of PSD-preference correlations, and see Fig. 5 for a summary

f effect sizes. 

. Discussion 

In the present study, we sought to understand electrophysiological

rain activity in response to artistic and mathematical fractal patterns.

articipants were presented with either artistic fractals (Jackson Pol-

ock [JP] white layers) or statistically matched random Cantor fractals,

hile recording electrical activity with EEG. After presentation of each

mage, participants were asked to rate each image in terms of personal

reference. Behavioral results indicated that subjects preferred higher

ractal dimension (D) stimuli to lower D stimuli, for both JP fractals and

atched random Cantor sets, and whole-scalp EEG analysis revealed

hat occipital-parietal alpha and beta activity was modulated by frac-

al complexity of the patterns, with power decreasing as complexity

ncreased. Furthermore, we found that parietal alpha power paramet-

ically tracked personal preference for JP images and for random Can-

or sets, with decreased parietal alpha power predicting increased sub-

ective preference. The recovered average Spearman correlations using

EG-PSD have maximal magnitudes of ~0.08-0.10, which are generally

n line with those reported in similar single-trial correlation analyses

 Cavanagh, 2015 ; Rawls & Lamm, 2021 ), and the effects were found to

e highly reliable and associated with medium-to-high effect sizes (Co-

en’s d for one-sample t-tests). As such, we present evidence that fractal

omplexity and preference are coded parametrically by EEG power spec-

ra during pattern viewing. 

.1. Subjective preference of fractals 

As D value increased, preference ratings increased. This correlation

as greater for the random Cantor sets, but was significant and posi-

ive for the JP images as well. Patterns of within-subject correlations

etween fractal dimension and preference were themselves correlated,

ndicating that subjects who preferred high-D JP stimuli also preferred

igh-D Cantor stimuli. This result is interesting, as there is disagree-

ent in the literature as to whether participants prefer high-dimension

ractals or mid-dimension fractals. For example, one study found no re-

ationship between fractal dimension and subjective preference when

articipants viewed fractal landscapes, but once images of water or hills

https://www.mathworks.com/matlabcentral/fileexchange/37105-plot-spread-points-beeswarm-plot
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Fig. 3. Plots of significant PSD-fractal dimension correlations. Topographic plots are shown threshholded at TFCE-p < .05. Line plots show correlation coefficients 

at sensors with maximal effects (marked by + signs on topographic plots), as determined quantitatively using TFCE. Red shading on line plots indicates ± 1 SEM, 

and blue horizontal lines indicate regions with TFCE p < .05 (i.e. regions of significance). 
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ere removed from the set there was a striking positive correlation be-

ween complexity and preference ( Hagerhall et al., 2004 ) (although note

hat these images only covered the range from D = 1.1-1.5, and it is

hus unclear whether this result can be extrapolated to higher frequency

anges). As none of our image sets included water or hills, it is possible

hat this debate hinges largely on the content of the images being viewed

ather than a strict preference for certain fractal dimensions. Other stud-

es have shown that ratings of exact fractals increased monotonically

ith higher D ( Bies, Blanc-Goldhammer, et al., 2016 ). This study also

ound that a small number of participants preferred low-D fractal pat-

erns. We also found that overall, participants preferred higher-D fractal

atterns, while a small portion of participants instead preferred lower-D

atterns. While latent profile analysis did not support the existence of
6 
ubgroups (S1), it is possible that a larger sample would allow for the

eparation of a low-D preferring subgroup. 

A limitation of our analysis of preference for fractal patterns is that

he single-trial framework only allowed us to make conclusions about

he presence or absence of monotonic relationships in the data. Future

nalyses might extend the single trial framework to include analysis

f nonlinear within-subject relationships, which would allow for detec-

ion of nonlinear relationships such as preference for mid-range fractals

ompared to low- or high-D fractals. This analysis could presumably be

one using nonlinear within-subject regression, although to our knowl-

dge this procedure has never been applied to EEG data. We do, how-

ver, note that we compared the fit of a quadratic regression to the fit

f Spearman correlations for the preference data, and we found that
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Fig. 4. Plots of significant PSD-preference correlations. Topographic plots are shown threshholded at TFCE-p < .05. Line plots show correlation coefficients at 

selected sensors with maximal effects (marked by + signs on topographic plots), as determined quantitatively using TFCE. Red shading on line plots indicates ± 1 
SEM, and blue horizontal lines indicate regions with TFCE p < .05 (i.e. regions of significance). 
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pearman correlations describe the fractal dimension – preference rela-

ionship more accurately. Future methodological improvements might

t more detailed within-subject models to assess preference for fractal

atterns. There is also an open question regarding the best method for

ssessing subjective preference of viewed images. Our rating scheme

sed a Likert-type scale, which is one of the most preferred methods for

ssessing preference, while some studies instead used two-alternative

orced-choice ranking. This difference might explain some of the dis-

repancies between our results and prior analyses. However, for the

ide variety of fractal dimensions we assessed, a two-alternative forced-

hoice task would have required an impossible number of trials, so stud-

es using two-alternative forced-choice procedures would have to either

e inordinately long or use a much smaller variety of stimuli than our

tudy used. 

.2. Single-trial eeg results 

We found that alpha and beta power were negatively modulated in

arietal regions with respect to increasing fractal complexity for both

mage types (artistic or mathematical), suggesting a shared mechanism

or visually processing details of an image. Intriguingly, this activity
7 
ccurred over similar frequencies for both Cantor and JP stimuli; that

s, for both stimulus types, alpha and beta PSD correlated negatively

ith fractal dimension. This suggests that overall, higher-complexity im-

gery is associated with decreased parietal alpha and beta power, in line

ith evidence that alpha activity might be suppressed during periods of

igher attention. Simulations suggest that gamma activity emerges in

he context of local excitatory/inhibitory interactions, while beta ac-

ivity subserves longer-range neuronal communication ( Kopell et al.,

000 ). Aissani and colleagues (2014) proposed that the beta activ-

ty could code for mid-level processes in the visual hierarchy (e.g.

epth ordering, computation of border ownership, contour completion,

nd filling in surfaces), and deep cortical layers that receive feedback

rom distant regions frequently produce more beta activity ( Donner &

iegel, 2011 ). 

Our finding that higher D values resulted in less beta power is in line

ith the evidence showing that beta power is indicative of long range

ommunication between populations of neurons, because the intricate

etail of these images likely relies on more local, short range neural

ommunication (e.g. line/edge detectors), while the less complex im-

ges allow for higher-level interpretations of aspects like depth ordering

nd contour completion. These results are also broadly in line with those
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Fig. 5. Topographic plots of effect size (Cohen’s d) for each EEG-PSD analysis reported. 
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resented in ( Hagerhall et al., 2008 ), whose authors indicated that low-

 fractal patterns produced lower alpha and beta power in compared to

igh-D fractal patterns. However, our results are not strictly compara-

le to those in ( Hagerhall et al., 2008 ), due to differences in the manner

f EEG frequency analysis and the parametric design and analysis em-

loyed in the current manuscript. 

Beta synchronization also modulates other perceptual processes,

uch as perceptual switches in binocular rivalry, with low beta synchro-

ization correlating with holding a consistent perceptual state, while

 significant increase in beta power occurs during perceptual switches

i.e. while integrating a new percept) ( Piantoni et al., 2010 ). The higher

eta power at lower D values could be attributable to the ambiguity of

he image, as the observer actively explores possible interpretations of

istable contours in the object recognition process, given that low to mid

 values induce object pareidolias at a higher rate than more complex

 values ( Bies et al., 2016 ). Conversely, low alpha and beta at high D

alues may reflect active visual processing, as well as the inherent per-

eptual stability of an image that contains intricate details too complex

o give rise to multiple interpretations. Future research will examine our

nterpretation of the role of cortical alpha and beta modulations in re-

orts of object pareidolia; if this interpretation is correct, it is expected

hat fractals generating lower parietal alpha and beta power will also

esult in fewer reported pareidolias. 
8 
Though the discovered parametric relationship between alpha/beta

ower and fractal complexity is intriguing, an important limitation

hould be noted. The complexity level of the stimuli used in the present

tudy is correlated with the number of black pixels in the image. Given

hat brightness may affect parietal and occipital activity ( Ero ğlu et al.,

020 ), further neuroscience research with stimuli that can be modulated

o control for overall luminance is needed. 

.3. Brain-behavior relationships: Neural correlates of subjective preference

Using our single-trial parametric analysis of EEG power spectra, we

ere able to identify consistent neural correlates of preference for both

P and random Cantor images. For both image types, increased pref-

rence correlated with decreased alpha power in occipital and parietal

egions. As such, we suggest that alpha power may indicate the degree

o which a subject finds an image aesthetically pleasing. Previous re-

earch suggests that alpha power is related to both creative processes

nd turning attention inwards ( Benedek et al., 2014 ). Additionally, al-

ha power is reliably expressed by the default mode network (DMN)

 Knyazev et al., 2011 ), which is associated with mind wandering and

elf-referential thought ( Buckner et al., 2008 ). Furthermore, the DMN

s consistently activated by paintings rated most “aesthetically moving ”

ith respect to each individual ( Vessel et al., 2012 , 2013 ). Thus, alpha



E. Rawls, R. White, S. Kane et al. NeuroImage 236 (2021) 118092 

p  

c  

t  

(  

l  

r  

e  

m  

a

 

l  

i  

i  

p  

t  

r  

t  

b  

p  

2  

a  

s  

t  

d  

e  

o  

i  

t  

e

4

 

fl  

a  

2  

t  

m  

f  

I  

e  

r  

p  

i  

i  

u  

n  

a  

f

F

 

g  

p

C

 

m  

r  

m  

w  

D  

e

D

 

q

D

A

 

P  

t  

s

S

 

t

R

A  

 

A  

B  

 

B  

 

B  

 

B  

 

B  

 

B  

 

B
B  

 

C  

 

C  

C  

 

C  

 

C  

 

C  

C  

 

 

D  

 

D  

D  

 

D  
ower found in relation to fractal pattern preference (JP and Cantor)

ould reflect participants actively turning attention inwards to relate

he image to themselves. Furthermore, increasing complexity of fractals

JP and Cantor), and increasing ratings of these fractals, both corre-

ated with decreased alpha power. This suggests that similar cortical

egions engaged by pattern complexity are related to aesthetic prefer-

nce, providing intriguing initial evidence of a brain mechanism that

ight instantiate the theorized direct relationship between complexity

nd aesthetic preference ( Birkhoff, 1933 ). 

A limitation of these results putatively describing a neural corre-

ate of preference for complex fractal patterns must be noted. There

s a strong relationship between dimension and aesthetic preference for

mages. Our analyses also indicate substantial overlap between neural

ower spectra coding for preference and for complexity of fractal pat-

erns. As such, there is limited evidence for neural power spectral cor-

elates specific to personal preference, and there remains the possibility

hat parietal alpha power tracks primarily fractal complexity. This might

e the case, as previous work has indicated that choice preference for

atterns might instead be reflected in frontal alpha power ( Chew et al.,

016 ). Thus, while we provide some evidence that fractal dimension

nd preference might be coded by parietal alpha power, future studies

hould aim to orthogonalize measures of preference and dimension so

hat neural correlates of dimension perception and preference can be in-

ependently analyzed. Additionally, we note that there are many differ-

nt types of fractals. As such, these are only a few possible explanations

f these results and future work should clarify neural activity underly-

ng aesthetic response to other classes of fractals, such as strange attrac-

ors ( Aks & Sprott, 1996 ) and Brownian motion images ( Bies, Boydston,

t al., 2016 ). 

.4. Conclusion 

We present a detailed analysis of whole-scalp EEG PSD patterns in-

uenced by the complexity of fractal images. We used a set of fractal

rt patterns, derived from Jackson Pollock paintings ( Taylor et al., 2007 ,

011 ), and a well-matched set of random Cantor sets with the same frac-

al dimension distribution as the artistic fractals. For both artistic and

athematical random fractal patterns, subjective preference increased

or higher fractal dimensions (D), representing more complex patterns.

ncreasing D also correlated with lower alpha and beta power over pari-

tal sensors. Furthermore, preference for both artistic fractals and for

andom Cantor fractals correlated with parietal alpha. This is the first

arametric (rather than categorical) analysis of EEG frequencies dur-

ng fractal pattern viewing, as previous analyses have grouped fractals

nto discrete categories, while fractal dimension is in reality a contin-

ous variable. Future work should build on these results by examining

onlinear relationships between brain activity, fractal dimension, and

esthetic preference, as well as the relationship of visual pareidolias to

ractal dimension, preference, and EEG activity. 
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