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Reinforcement learning capitalizes on prediction errors (PEs), representing the deviation of

received outcomes from expected outcomes. Mediofrontal event-related potentials (ERPs),

in particular the feedback-related negativity (FRN)/reward positivity (RewP), are related to

PE signaling, but there is disagreement as to whether the FRN/RewP encode signed or

unsigned PEs. PE encoding can potentially be dissected by time-frequency analysis, as

frontal theta [4e8 Hz] might represent poor outcomes, while central delta [1e3 Hz] might

instead represent rewarding outcomes. However, cortical PE signaling in negative rein-

forcement is still poorly understood, and the role of cortical PE representations in behav-

ioral reinforcement learning following negative reinforcement is relatively unexplored. We

recorded EEG while participants completed a task with matched positive and negative

reinforcement outcome modalities, with parametrically manipulated single-trial outcomes

producing positive and negative PEs. We first demonstrated that PEs systematically influ-

ence future behavior in both positive and negative reinforcement conditions. In negative

reinforcement conditions, mediofrontal ERPs positively signaled unsigned PEs in a time

window encompassing the P2 potential, and negatively signaled signed PEs for a time

window encompassing the FRN/RewP and frontal P3 (an “aversion positivity”). Central

delta power increased parametrically with increasingly aversive outcomes, contributing to

the “aversion positivity”. Finally, negative reinforcement ERPs correlated with RTs on the

following trial, suggesting cortical PEs guide behavioral adaptations. Positive reinforcement

PEs did not influence ERP or time-frequency activity, despite significant behavioral effects.

These results demonstrate that mediofrontal PE signals are a mechanism underlying

negative reinforcement learning, and that delta power increases for aversive outcomes

might contribute to the “aversion positivity.”

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

Reinforcement learning (RL) models place particular weight

on prediction errors (PEs), a calculation of how closely the

outcomes of our actions match our expectations (Sutton &

Barto, 2018). Different RL models use distinct types of PE for

optimal learning. Rescorla and Wagner (1972) suggested de-

viations from expectancy follow a monotonic function (a

signed PE), such that low-value PEs makes behaviors less

likely, and high value PEs make behaviors more likely. Pearce

and Hall (1980) suggested an important role of the absolute

value of the PE (an unsigned PE) in modulating the amount of

attention devoted to outcomes. A later class of models, tem-

poral difference models (Sutton & Barto, 2018), utilize both

signed and unsigned PEs at once to guide behavior more

optimally than earlier models. Theoretical RL accounts have

sparked interest in how neural activity computes PEs.

Schultz, Dayan, Montague, (1997) and Hollerman and

Schultz (1998) demonstrated that dopamine (DA) neurons

encode signed PEs, initially leading to the belief that all DA

cells signal signed reward PEs. These early reports of DA

reward PE encoding were quickly applied to the study of

human reinforcement processing. Upon observing a nega-

tivity in the scalp-recorded event-related potential (ERP)

following omission of expected positive feedback (the feed-

back-related negativity [FRN]), Holroyd and Coles (2002) hy-

pothesized that this potential encoded a dopaminergic signed

negative PE (worse-than-expected outcomes). Recent work

has elaborated on this result, suggesting that themediofrontal

brain response to reinforcing feedback might instead be

dominated by a positive-going potential sensitive primarily to

better-than-expected outcomes (the reward positivity [RewP];

Holroyd, Pakzad-Vaezi, & Krigolson, 2008), an effect that has

been linked theoretically to DA reward signaling. Regardless

of whether results are interpreted as a reward positivity or a

punishment negativity, results in positive reinforcement para-

digms are clear that incorrect feedback results in a more

negative mediofrontal ERP amplitude than correct feedback

(Sambrook & Goslin, 2015).

This pattern does not appear to hold in negative reinforce-

ment contexts. In negative reinforcement, punishment omis-

sion evokes a more negative mediofrontal ERP than

punishment delivery (an “aversion positivity”; Talmi, Atkinson,

& El-Deredy, 2013), an effect that is well replicated (Hird, El-

Deredy, Jones, & Talmi, 2018; Huang & Yu, 2014; Rawls,

Miskovic, Moody, et al., 2020; Soder & Potts, 2018). However,

results describing the brain response to graded PEs in negative

reinforcement are incomplete, as the most recent meta-

analysis of magnitude effects on the feedback-locked ERP did

not separate negative and positive reinforcement (Sambrook &

Goslin, 2015). In addition to a need for careful examination of

negative reinforcement PE magnitude effects on the ERP, a

detailed understanding of the brain response to graded PEs in

negative reinforcement can be yielded by supplementing ERP

analysis with time-frequency analysis. This approach is

particularly attractive since it is argued that the FRN and RewP

might be separable components of the ERP, with the FRN

reflecting a theta-band response to aversive PEs, and the RewP

reflecting a delta-band response to reward PEs (Bernat, Nelson,
& Baskin-Sommers, 2015; Cavanagh, 2015; Cavanagh, Frank,

Klein, & Allen, 2010; Sambrook & Goslin, 2016).

Given that a primary reason for encoding PEs should be to

drive behavioral adaptation (Sutton & Barto, 2018), it is to be

expected that PE-encoding brain activation should predict

reinforcement learning. However, the relationship of the FRN/

RewP to behavioral adaptation is infrequently examined, and

results linking the feedback-locked ERP to behavior are

inconsistent (Walsh & Anderson, 2012). For example, some

studies have shown that the FRN/RewP changes amplitude

over time only in participants who show behavioral learning

(Bellebaum & Daum, 2008; Krigolson, Pierce, Holroyd, &

Tanaka, 2009; Walsh & Anderson, 2011), yet other studies

have shown behavioral reinforcement learning with no rela-

tionship to feedback-locked ERP amplitude (Cavanagh, 2015).

Direct evidence of within-subject links between feedback-

locked neural activation and subsequent behavioral adapta-

tion is rarer still [but see (Fischer & Ullsperger, 2013)]. Even

more critical to the current study, we are unaware of any

analysis examining direct links between neural PE represen-

tations and negative reinforcement learning in humans.

The current report utilized a theory-driven task design to

deliver positive and negative PEs with parametrically varying

magnitudes in a task with matched positive and negative

reinforcement outcomemodalities, unlike previous tasks that

have contrasted monetary rewards and shock avoidance

(Heydari&Holroyd, 2016; Mulligan&Hajcak, 2018; Talmi et al.,

2013). We randomized outcomes in each correct trial to pro-

duce single-trial PEs without being confounded by behavioral

errors. We examined neural representations of PE magnitude

using a single-trial ERP analysis within single subjects. Given

recent evidence that delta and theta activity might serve to

differentiate reward and aversion encoding, we supplemented

ERP analyses using delta and theta time-frequency analysis.

We hypothesized that, specific to negative reinforcement tri-

als, the FRN/RewP would grow more positive as outcomes

grew more aversive (an “aversion positivity”). We further hy-

pothesized that this aversion PE response would predict

behavioral adaptation in negative reinforcement. As neuro-

physiological evidence indicates that positive reinforcement

learning mostly relies on mesolimbic (rather than meso-

cortical) DA projections, we hypothesized that positive rein-

forcement conditions would be accompanied by behavioral

learning but no mediofrontal PE.
2. Materials and methods

2.1. Participants

We report how we determined our sample size, all data ex-

clusions (if any), all data inclusion/exclusion criteria, whether

inclusion/exclusion criteria were established prior to data

analysis, all manipulations, and all measures in the study.

Sample size was determined based on prior literature in the

area, specifically similar single-trial studies reported in

(Sambrook & Goslin, 2016; who recruited 46 subjects) and

(Sambrook & Goslin, 2014; who recruited 55 subjects). We

initially recruited 56 subjects with the intention of including a

minimum of 50 subjects with useable data, but all subjects
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were able to be included following preprocessing. No post-

recruitment exclusion criteria were used, and minimal pre-

recruitment exclusion criteria (detailed below) were in place

as laboratory protocol prior to study design. Data collection

and analyses for this study were not pre-registered.

56 undergraduates (37 female, mean age 19.2 [SD 2.06], 2

left handed) completed the study after giving informed con-

sent. Participants were excluded from participating in the

study if they had a self-reported psychiatric diagnosis, un-

corrected visual impairments, or were currently using psy-

choactive medication (exclusion established prior to

participation). All procedures were approved by the University

of Arkansas Institutional Review Board (Protocol #

1708016049). Participants were compensated with course

credit, as well as a monetary bonus based on their perfor-

mance (mean: $7, min: $2, max: $18). As our study included

two left handed subjects, we ran all described analyses after

excluding the 2 left-handed subjects to ensure that our results

are not confounded by participant handedness. In all cases,

results were virtually unchanged; therefore, we present re-

sults including both right- and left-handed participants.

During this study, participants completed the reported

reinforcement learning task in addition to a number of ques-

tionnaires, which are not of interest to the current report.

These questionnaires included demographics information,

the State-Trait Anxiety Inventory (Spielberger, 1983), theWHO

AUDIT and ASSIST questionnaires (Saunders, Aasland, Babor,

de la Fuente, & Grant, 1993), the Tobacco Craving Question-

naire Short Form (Heishman, Singleton, & Pickworth, 2008),

the Minnesota Nicotine Withdrawal Scale (Hughes, Gust,

Skoog, Keenan, & Fenwick, 1991), the Fagerstr€om Tobacco

and Nicotine Dependence survey (Fagerstr€om, 1978), the

UPPS-P Impulsive Behavior Scale (Lynam,Whiteside, Smith,&

Cyders, 2006), the Adult Temperament Questionnaire Short

Form (Evans & Rothbart, 2007), the BIS-11 (Patton, Stanford, &

Barratt, 1995), and the Five Facets of Mindfulness Question-

naire (Baer, Smith, Hopkins, Krietemeyer, & Toney, 2006).

None of these self-report instruments were used in this

report, which was concerned only with behavioral and brain

responses in reinforcement learning.

2.2. Reinforcement learning task

Task stimuli were presented in E-Prime 2.0 on a black back-

ground. See Fig. 1 for a graphical depiction of the behavioral

task and analysis strategy. At the beginning of every trial, a

fixation cross was presented. Participants were then shown a

white circle or square for 500 msec, signifying positive or

negative reinforcement respectively. Participants were

informed during the task instruction block what each cue

shape signified, and the task practice did not begin until each

participant verbally demonstrated an understanding of the

meaning of the two task cues. Negative and positive rein-

forcement were presented in pseudo-random order, with all

participants receiving the same task order. This shape was

followed by a fixation cross (þ) that lasted 500e700msec. A set

of congruent (<< < < < or > > > > >) or incongruent (<< > < < or

>> < > >) flanker arrow stimuli were then shown for 100msec,

followed by a fixation cross lasting from 900 to 1100 msec.

Valenced feedback (correct or incorrect) was shown for
500 msec, followed by a fixation cross lasting 500e700 msec.

Finally, point feedback was shown for 1000 msec.

The critical task manipulation lay in the final presentation

of point feedback. The average (thus expected) return for

correct positive reinforcement trials was 50 points, but the

actual return fluctuated within 30 points of that on a trial-by-

trial basis (i.e., for positive reinforcement wins, participants

could earn anywhere from 20 points to 80 points, with an

average win of 50 points). Likewise, the average (thus ex-

pected) return for correct negative reinforcement trials was

zero points, but the actual return varied from�30 to 30 points.

Critically, participants were aware that for both positive and

negative reinforcement trials, correct answers always resul-

ted in better outcomes (50 points higher) than incorrect an-

swers. Before participants began the main task, they

completed a minimum of 50 trials for practice. Participants

could not move on to the main task until they demonstrated

understanding of the task during the practice, measured as an

accuracy rate of 80% or above during practice. During practice

trials, the outcome was always as expected (i.e., for positive

reinforcement correct answers resulted in a gain of 50 points

while incorrect answers resulted in an outcome of 0 points,

and for negative reinforcement correct answers resulted in an

outcome of 0 points and incorrect answers resulted in a loss of

50 points). Participants responded using their left thumb (for

left arrow targets) or their right thumb (for right arrow tar-

gets). Participants completed 960 trials of the main task,

divided into 16 blocks of 60 trials each, with rest breaks be-

tween blocks. Participants required approximately 90 min to

complete the task. By creating an expectation of average

outcome in the practice and then systematically providing

more or less points than expected on correct trials, we are able

to separate the effect of PE (was it better or worse than ex-

pected?) from the effect of error monitoring (was the outcome

correct or incorrect?). The current analysis was restricted to

sets of two correct trials in a row, in order to remove con-

founding effects of error/performance monitoring on PE

signaling (for the first trial), and in order to allow interpreta-

tion of reaction time speeding as improved behavior (for the

second trial).

2.3. EEG processing

EEG were sampled at 1000 Hz using a 129-channel EGI sensor

array referenced to vertex (Philips EGI, Inc.). Recording began

after impedances were reduced below 50 kU. Data were

processed using EEGLAB 15 (Delorme & Makeig, 2004) and

MATLAB 2018b. Continuous data were downsampled to

125 Hz with anti-aliasing, low-pass filtered at 35 Hz using a

zero-phase FIR filter, and high-pass filtered at .1 Hz using a

zero-phase FIR filter. Bad channels were removed using joint

probabilities with built-in EEGLAB functions (cutoff of 4

standard deviations). Copies were made of each dataset,

which were high-pass filtered at 1 Hz using a zero-phase FIR

filter, in preparation for computing independent compo-

nents analysis (ICA) (Makeig, Bell, Jung, & Sejnowski, 1996).

All data were epoched into 3 sec windows surrounding point

feedback onset (from �1000 msec before to 2000 msec after).

Infomax ICA was computed on the 1 Hz filtered dataset

(Winkler, Debener, Muller, & Tangermann, 2015, pp.

https://doi.org/10.1016/j.cortex.2021.03.012
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Fig. 1 e Task diagram and analysis for the modified reinforcement flanker paradigm. Participants were cued as to whether

the current trial was to be positive or negative reinforcement with a white square or a white circle, respectively. Participants

then had to respond to a flanker arrow stimulus that was either congruent or incongruent (congruent and incongruent trials

were considered equivalent for the current manuscript). Only correct trials were analyzed (trials n and nþ1). Finally,

participants were given some amount of points (on average þ 50 for positive reinforcement and þ0 for negative

reinforcement). Every trial, the amount of points given deviated slightly from the overall mean expectation, generating

outcomes that were worse-than-expected or better-than-expected. All task events outlined in red are used as control

variables of no interest in analysis of RTs, ERP, and time-frequency regressions. Regressions were run separately for

positive and negative reinforcement conditions. Behavior and brain analysis proceeded with three regressors: 1) signed PE,

2) unsigned PE (absolute value of signed PE), 3) weighted PE (interaction of signed and unsigned PE). Regressors of interest

are outlined in green. The dependent variable for behavioral analysis was the RT immediately following reinforcement

outcomes, and the dependent variable for EEG analysis was the single-trial ERP amplitude (or delta/theta-band power) time-

locked to reinforcement outcomes (PEs). Dependent variables are outlined in blue.
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4101e4105). Bad channels were not interpolated before

running ICA. Likely artifactual independent components

were detected using the SASICA plugin (Chaumon, Bishop, &

Busch, 2015) using a combination of three methods: 1)

autocorrelation statistics, 2) focal component activity, and 3)

routines from the ADJUST plugin (Mognon, Jovicich,

Bruzzone, & Buiatti, 2011). ICs were additionally labeled

using the ICLabel plugin (Pion-Tonachini, Kreutz-Delgado, &

Makeig, 2019), and ICs labeled as eye, heart, muscle, line

noise, or channel noise with greater than 70% confidence

were marked as artifactual. ICA weights and artifact com-

ponents calculated in the 1 Hz high-pass filtered dataset
were copied to the .1 Hz high-pass filtered dataset, and

detected artifactual ICs were visually verified and removed

from the data; all further analyses were performed on the

.1 Hz filtered dataset. For ERP analyses, data were epoched

from �200 prior to point feedback to 800 msec following

point feedback, and for time-frequency analysis continuous

data were epoched from �2500 msec prior to point feedback

to 3500 msec after point feedback to eliminate edge artifacts

resulting from wavelet convolution (Cohen, 2014). Epochs

containing fluctuations with voltage exceeding ±140 mV were

detected and removed as well. Removed channels were

interpolated using spherical splines and data were

https://doi.org/10.1016/j.cortex.2021.03.012
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rereferenced to the montage average. Finally, artifact-free

single trials of EEG were baseline corrected for the

200 msec preceding feedback presentation in preparation for

single-trial ERP analysis.

To more finely examine neural processing of reinforcing

feedback, we also examined time-frequency activation by

convolving single trials of EEGwith a family ofMorlet wavelets

(EEGLAB newtimef() function). We extracted single trials of

delta power by using wavelets centered at 1, 2, and 3 Hz, and

we extracted single trials of theta power by using wavelets

centered at 4, 5, 6, 7, and 8 Hz. All wavelets had a width of 3

cycles. Instantaneous power was extracted by taking the ab-

solute value of the squared result of the convolution, then

averaging over all frequencies within the frequency band

(delta or theta). Single trials of time-frequency power data

were not baseline corrected prior to single-trial analysis, as

any baseline offsets only contribute to the intercept of the

regression (Cohen, 2014).

2.4. Control analyses for trial expectancy

Our task conditions did not differ by difficulty, and we

presented the same number of trials in each category and

for each possible outcome. Note that the current analysis

did not examine error trials; however, examination of error

rates is still necessary in order to ensure our analyses

controlled for expectancy. It is possible that some system-

atic relationship between PE and accuracy might have

existed, since we did not explicitly control accuracy rates.

However, if this were the case, it would have meant some

trials were experienced more frequently than others. For

our results to be unambiguously interpreted, it is essential

that all task categories were equally expected over the

length of the task, that is, that accuracy did not differ

depending on reinforcement type or prediction error. To test

whether or not all trial types had equivalent expectancies,

we used single-trial logistic regression within individual

subjects to predict accuracy (correct/error) using reinforce-

ment type (positive/negative) and PE (signed PE, unsigned

PE, and signed � unsigned PE) (MATLAB glmfit() function

with binomial distribution). We then tested the coefficients

against a null hypothesis mean of zero using one-sample t-

tests. From this test we are able to conclude whether or not

accuracy rates, and therefore expectancy, differed by

condition.

2.5. Analysis of task effects on behavioral adaptation
using reaction times

We used within-subject regression models to analyze whether

RTs on trial nþ1 differed systematically according to prediction

errors in trial n. A robust regression (MATLAB robustfit() func-

tion) predicted trial-by-trial RTs (trial nþ1) separately following

positive and negative reinforcement trials using prior trial (trial

n) signed PE, prior trial unsigned PE, and the interaction of prior

trial signed � unsigned PE. All regressions controlled for the

influence of current trial (trial nþ1) reinforcement type, as this

was not of interest in measuring behavioral adaptation

following specific types of reinforcement. Regressions also

included potential influences of trial n-1 signed PE, unsigned PE,
weighted PE (signed � unsigned interaction), and accuracy to

remove potential carryover effects from prior trials and to

ensure that behavioral adaptation was due only to the imme-

diately preceding outcome. Note that our task design centered

signed prediction errors on zero, ensuring that signed and un-

signed PE terms were orthogonal and therefore suitable for use

in simultaneous regression analysis. Previous analyses have

orthogonalized correlated signed and unsigned PE terms for

regression (Hauser et al., 2014), but in line with (Sambrook &

Goslin, 2016), we instead used signed PEs centered on zero

resulting in uncorrelated signed and unsigned PEs.

This analysis returned within-subject b weights for the

impact of signed PE, unsigned PE, and signed� unsigned PE on

behavior, separately following positive and negative rein-

forcement. All independent variables in the regressionwere z-

scored; therefore, b weights represent units of milliseconds

per regressor SD. As b weights are normally distributed under

the null hypothesis, regression coefficients were tested

against a null hypothesis of zero (no impact of PE on following

trial RT) using one-sample t-tests. From this analysis we are

able to conclude whether PEs influence behavioral adaptation

in the following trial, and whether this adaptation effect dif-

fers between positive and negative reinforcement. This anal-

ysis formed our primarymeasure of behavioral reinforcement

learning.

2.6. Single-trial analysis of signed, unsigned, and
weighted PEs in the ERP and time-frequency power

Within each participant, single trials of raw artifact-free EEG

(aswell as single trials of theta-band and delta-band EEG)were

separated by reinforcement type (positive/negative rein-

forcement) and analyzed at every sensor and sample from 0 to

800 msec post-stimulus. For every sensor and sample, we fit a

robust regression equation that modeled EEG as a function of

signed PE, unsigned PE, and an interaction term of

signed � unsigned PE, as well as control regressors for prior

trial characteristics (reinforcement type, signed PE, unsigned

PE, signed � unsigned PE, and correct/error). This regression

returned a series of sensor (129) � time point (101) b weights

for signed PE, unsigned PE, and signed � unsigned PE. All in-

dependent variables were z-scored prior to fitting the re-

gressions, and brain activity was left in its native scaling;

therefore, b weights represent units of mV (for single-trial ERP

analysis) or mV2 (for single-trial delta/theta power analysis)

change per SD of the regressor. Significance of regression co-

efficients were tested using mass univariate one-sample t-

tests implemented in the Mass Univariate ERP Toolbox

(Groppe et al., 2011a, 2011b). This analysis included only the 91

sensors located on the scalp (i.e., face electrodes were not

considered). p-values were corrected for multiple compari-

sons using Benjamini and Hochberg’s (1995) false discovery

rate (FDR).

2.7. Single-trial analysis of relationship between brain
activity and behavior

To test whether brain activity on a single trial basis predicts

behavioral modification on the following trial over and above

task characteristics, we used single-trial partial Spearman

https://doi.org/10.1016/j.cortex.2021.03.012
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correlations to predict single trial RTs (trial nþ1) using single

trials of raw EEG, delta power EEG, and theta power EEG (trial

n) at every sensor (91 scalp sensors) and sample (101 time

points), while controlling for 1) following trial (trial nþ1) ef-

fects (reinforcement type), 2) current trial (trial n) effects (PE

[signed, unsigned, and interaction]) and 3) prior trial (trial n-1)

effects (reinforcement type, PE [signed, unsigned, and inter-

action], and correct/error outcome). Whole-scalp correlations

were tested against a null hypothesis mean of zero (no cor-

relation between brain activity and the following behavior)

using mass univariate one-sample t-tests implemented in the

Mass Univariate ERP Toolbox (Groppe et al., 2011a, 2011b). p-

values were corrected for multiple comparisons using

Benjamini and Hochberg’s (1995) FDR. This allowed a well-

controlled analysis of whether or not EEG activity predicts

behavioral modification on the following trial, as predicted by

reinforcement learning models.
3. Results

3.1. Control analysis of expectancies

Control analyses (within-subject logistic regression of ac-

curacy on reinforcement type [positive or negative] and

prediction errors) indicated that accuracy did not differ

systematically depending on reinforcement type or PE (all

p > .16). We conclude that all outcomes were encountered

equal numbers of times and therefore equally expected,

so expectancy is unlikely to be a factor in any of our re-

ported results. As correct outcomes were equally expected

across all reinforcement types and PE magnitudes, we

examine only correct trials (n) followed by correct trials

(nþ1) in the remainder of our analyses. As accuracy rates

were high in this task (mean ¼ 80%, SD ¼ 10%), this

allowed sufficient trials for single-trial analysis within

every participant.

3.2. Behavioral adaptation following specific types of
reinforcement

Response times following negative reinforcement outcomes

were negatively predicted by unsigned PEs (higher unsigned

PE drove faster RTs on the following trial), b ¼ �2.79,

t(55) ¼ �6.38, p ¼ 3.9e-8, and positively predicted by the

interaction term (signed � unsigned), b ¼ 1.47, t(55) ¼ 2.41,

p ¼ .02. For responses following positive reinforcement out-

comes, RTs were negatively predicted by the interaction term

(signed � unsigned), b ¼ �2.52, t(55) ¼ �4.95, p ¼ 7.5e-6. This

result indicated significant moderation effects based on the

interaction of signed and unsigned PE on RTs. Based on the

theoretical interpretation of unsigned PE as reflecting a

learning rate (Sutton & Barto, 2018), we examined these

interaction effects using unsigned PE as a factor moderating

the influence of signed PE on RTs. For this analysis, we

examined the influence of signed PE on following RTs at un-

signed PE levels of �1 SD and þ1 SD.

For negative reinforcement, at low levels of unsigned PE,

signed PE did not influence RT on the following trial, but at

high levels of unsigned PE, signed PE positively influenced RT
on the following trial. This moderation indicates an RT

speeding effect following high-salience, low-value punish-

ments, and an RT slowing effect following high-salience, high-

value punishment avoidance. For positive reinforcement, the

interaction indicated that at low levels of unsigned PE, signed

PE modestly influenced RT on the following trial, but at high

levels of unsigned PE, signed PE negatively influenced RT on

the following trial. This moderation indicates an RT speeding

effect following high-salience, high-value rewards.

These results indicate that behavioral modifications follow

both salient positive reinforcement rewards, and salient

negative reinforcement punishments. Effects for both nega-

tive and positive reinforcement are in line with reinforcement

learning models suggesting that the unsigned salience of an

outcome weights the importance of that outcome’s signed

value in predicting behavioral adaptation. Statistical results

for all behavioral analyses are displayed in Fig. 2.

3.3. Single-trial analysis of signed, unsigned, and
weighted PEs in the event-related potential

Results of single-trial ERP regression analysis are shown in

Fig. 3. Results for negative reinforcement indicated a strong

negative signed value representation in the mediofrontal ERP

starting at ~200 msec and continuing until ~550 msec post-

feedback. This time period encompassed the traditional time

window and scalp topography of the FRN/RewP, and indicated

that ERP amplitude grew more negative as the value of out-

comes grew higher (i.e., an “Aversion Positivity”). A positive

unsigned PE was present in the mediofrontal ERP, but at an

earlier time period (~150 msec). This positive salience effect

moved posteriorly over time until ~250 msec. A negative un-

signed PE effect briefly reached significance at anterior sen-

sors at ~250 msec, indicating that the ERP grewmore negative

as outcomes grew more salient. An interaction of signed

PE � unsigned PE was briefly significant at frontal sensors at

~200 msec, which might be a mechanism that aids in early

recognition of binary good/bad outcome evaluation by

magnifying the representation of values that deviate from

zero but are not highly salient.

Other than a brief positive signed PE representation over

parietal sensors (~150 msec), no regression results were sig-

nificant for positive reinforcement conditions. Note that pos-

itive reinforcement conditions did result in strong behavioral

indices of reinforcement learning, but no discernible scalp

representation of PEs. This is in line with neurophysiological

evidence that punishing events are largely represented by

mesocortical dopamine projections, but rewarding events are

largely represented by mesolimbic dopamine projections.

3.4. Single-trial analysis of signed, unsigned, and
weighted PEs in delta and theta bands

As previous evidence has suggested that time-frequency

analysis might provide a way to dissect overlapping brain

potentials, and in particular that theta activity signaling

aversive PEs might underlie the FRN, while delta activity

signaling rewards but underlie the reward positivity, we

repeated our single-trial raw EEG analyses using delta [1e3 Hz]

and theta [4e8 Hz] EEG. Results of single-trial delta power

https://doi.org/10.1016/j.cortex.2021.03.012
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Fig. 2 e Reaction times immediately following reinforcing outcomes (trial nþ1) were analyzed using single-trial regression

within subjects, with trial n signed PE, unsigned PE, and the interaction (signed £ unsigned PE) as regressors. This analysis

also included trial n-1 reinforcement type (positive or negative), signed PE, unsigned PE, and the interaction

(signed £ unsigned PE), as well as accuracy, as regressors of no interest. Within-subject regression weights were tested for

significance against a null-hypothesis mean of zero using one-sample t-tests. Distribution dot-plots show individual

subject regression weights, with error bars corresponding to ±SEM. Distribution dot-plots were produced using the

plotSpread.m function from the MATLAB file exchange (https://www.mathworks.com/matlabcentral/fileexchange/37105-

plot-spread-points-beeswarm-plot). Significant moderation effects were probed at ¡1 SD and þ1 SD as suggested by (Baron

& Kenny, 1986).
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regression and theta power regression are shown in Figs. 4

and 5, respectively.

Intriguingly, we found a highly significant effect of signed

PE on central delta power in negative reinforcement condi-

tions, indicating that delta power increased with more aver-

sive outcomes in negative reinforcement. Previous results

have found that delta power increases with increasing re-

wards in positive reinforcement conditions. This suggests a

potential mechanism underlying the “aversion positivity”

observed in negative reinforcement conditions e as the RewP

occurs primarily in delta-band over central sensors, the

observed aversion positivity in negative reinforcement might

be a Reward Positivity that flips in sign for negative rein-

forcement (compared to positive).

Likewise, we also found a significant effect of signed PE on

frontal theta power in negative reinforcement at a relatively

early time period (~150e200 msec). This effect also indicated

that frontal theta power increased for more aversive stimuli, in

line with previous evidence that theta power increases for
aversive stimuli. We also noted an effect of signed PE on oc-

cipital theta from ~100 to 400 msec, which was qualified by an

interaction of signed andunsigned PE. Similar to the interaction

effect present in the ERP, this might be a mechanism that aids

in early recognition of binary good/bad outcome evaluation.

3.5. Mediofrontal Brain Mechanisms of reinforcement
learning

We tested whether PE-encoding EEG signatures (trial n) pre-

dicted response times in the following trial (trial nþ1) using

single-trial partial Spearman correlations between full-scalp

EEG and reaction times on every trial. Results indicated that

central ERP activity (peaking over sensor E30 at ~248 msec)

significantly positively predicted following trial reaction times

(Fig. 6). This result was only significant for negative rein-

forcement trials. For positive reinforcement trials, no ERP-RT

correlations passed significance, and no time-frequency

power results (delta and theta band) were capable of

https://www.mathworks.com/matlabcentral/fileexchange/37105-plot-spread-points-beeswarm-plot
https://www.mathworks.com/matlabcentral/fileexchange/37105-plot-spread-points-beeswarm-plot
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Fig. 3 e Results of single-trial ERP regression analysis. All topographic plots were masked using an alpha of .05, corrected for

multiple comparisons using the false discovery rate. All line plots (regression weights and ERPs) are plotted with shading

corresponding to ±SEM. For negative reinforcement conditions, a strong negative signed PE was present over mediofrontal

sensors from ~200 - 550 msec. An unsigned PE was present over mediofrontal sensors at ~150 msec, and this effect shifted

to be more posterior over time. Other than a brief signed PE representation over parietal sensors (~150 msec), no regression

effects were significant for positive reinforcement conditions.
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predicting future behavioral adaptations for any trial type.

These analyses controlled for trial n-1 accuracy (correct or

incorrect); trial n (ERP measurement) reinforcement type

(positive or negative), signed PE, unsigned PE, and interaction

(signed � unsigned PE); and trial nþ1 reinforcement type

(positive or negative), therefore we can conclude that ERP

activity predicted future behavioral adaptation, reflected in

reaction times, above-and-beyond any task effects.

4. Discussion

4.1. General discussion

In this study we delivered continuous prediction errors (PEs)

in correct positive and negative reinforcement trials, and

quantified brain and behavioral responses to PEs using
single-trial reaction time (RT), ERP, and time-frequency

regression analysis. We found that prediction errors (PEs)

generated robust behavioral effects in both positive and

negative reinforcement, whereas brain potentials signaled

PEs in negative reinforcement conditions only. This repli-

cates previous reports of an “aversion positivity” in negative

reinforcement conditions (Hird et al., 2018; Huang&Yu, 2014;

Rawls, Miskovic, Moody, et al., 2020; Soder & Potts, 2018;

Talmi et al., 2013), and extends these results by demon-

strating parametric effects of graded PEs on mediofrontal

ERPs and delta-band time-frequency activity in negative

reinforcement. As delta-band activity is thought to underlie

the Reward Positivity (RewP; Bernat et al., 2015; Cavanagh,

2015), this suggests the negative reinforcement aversion

positivity might result from a flipped RewP (increased delta

activity for aversive negative reinforcement outcomes).

https://doi.org/10.1016/j.cortex.2021.03.012
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Fig. 4 e Results of single-trial delta time-frequency regression analysis. All topographic plots weremasked using an alpha of

.05, corrected for multiple comparisons using the false discovery rate. All line plots (regression weights and power) are

plotted with shading corresponding to ±SEM. For negative reinforcement conditions, a strong negative signed PE was

present over central sensors from ~100 to 650 msec. No regression effects were significant for positive reinforcement

conditions.
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Finally, we found that single-trial central ERPs during the

FRN/RewP time window positively predicted RTs on the

following trial, demonstrating a neural basis for negative

reinforcement learning.

4.2. Behavioral results

Most EEG reinforcement studies are without corresponding

behavioral analysis, but to understand brain computations

behavior should be analyzed (Krakauer, Ghazanfar, Gomez-

Marin, MacIver, & Poeppel, 2017). In negative reinforcement,

we observed response speeding following both better-than-

expected and worse-than-expected negative reinforcement

outcomes; the effect of PEs on RT speeding was most notable

for low value punishments. For positive reinforcement, re-

sults indicated RT speeding effect following high-value re-

wards. Similar effects following rewarding outcomes were

reported by Sedaghat-Nejad, Herzfeld, and Shadmehr (2019),
who demonstrated that human saccades toward a target were

faster following high reward PEs. Interestingly, while previous

studies have examined the effects of positive reinforcement

outcomes on response times, our study appears to be the first

to use RTs to explicitly examine negative reinforcement

learning in humans. However, previous reports have exam-

ined the impact of punishments on following response times;

for example, Steel, Silson, Stagg, and Baker (2016) demon-

strated that punishment training resulted in response

speeding. Our study extends the previous training effects for

training to an examination of immediate trial-by-trial

behavioral adaptation. Overall, our behavioral results

demonstrate that high rewards in positive reinforcement

drive behavioral modification, and both punishment and

avoidance drive behavioral modification in negative rein-

forcement learning.

https://doi.org/10.1016/j.cortex.2021.03.012
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Fig. 5 e Results of single-trial theta time-frequency regression analysis. All topographic plots were masked using an alpha

of .05, corrected for multiple comparisons using the false discovery rate. All line plots (regression weights and power) are

plotted with shading corresponding to ±SEM. For negative reinforcement conditions, a negative signed PE was present over

frontal sensors from ~100 to 200 msec, and a negative signed PE effect was significant over occipital sensors from 100 to

400 msec. This occipital effect was qualified by an interaction of signed and unsigned PE. No regression effects were

significant for positive reinforcement conditions.

c o r t e x 1 4 0 ( 2 0 2 1 ) 2 6e3 9 35
4.3. Cortical representations of prediction errors

Typical ERP studies average trials to make categorical com-

parisons between conditions (Luck, 2014), but real world out-

comes are graded and do not map onto binary “good” versus

“bad” valences. Instead, we examined parametric neural

representations of reinforcing outcomes, using a whole-scalp,

component-free analysis (Fischer & Ullsperger, 2013; Rawls,

Miskovic, & Lamm, 2020; Rousselet et al., 2008, 2009). While

this analysis did not rely on measurement of “peaks” in the

waveform, our hypotheses nevertheless rested largely on a

feedback-locked brain potential variously called the feedback-

locked negativity (FRN) or the reward positivity (RewP). Initial

reports primarily characterized the FRN/RewP using differ-

ence wave techniques e such that the FRN and RewP were in

fact the same component, just mirror images of each other
(Proudfit, 2015). More recent evidence suggests that the RewP

and FRNmight in fact be separable components of the evoked

potential, with the FRN encompassing a topography and time

period similar to the mediofrontal N2, and the RewP encom-

passing a more central-parietal topography. Time-frequency

analysis might be able to separate these overlapping compo-

nents, as the FRN is believed to reflect a theta-band response

to aversive PEs, while the RewP instead reflects a delta-band

response to reward PEs (Bernat et al., 2015; Cavanagh, 2015;

Cavanagh et al., 2010; Sambrook & Goslin, 2016).

In line with previous analyses, in negative reinforcement

we found that the mediofrontal ERP covaried negatively with

signed PEs. While this “aversion positivity” effect is well

replicated (Hird et al., 2018; Huang & Yu, 2014; Pfabigan et al.,

2015; Rawls, Miskovic, Moody, et al., 2020; Soder & Potts, 2018;

Talmi et al., 2013), the representation of graded PEs during

https://doi.org/10.1016/j.cortex.2021.03.012
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Fig. 6 e Single-trial partial Spearman correlations between

ERP amplitude and following-trial reaction times. For

negative reinforcement, results indicated that central ERP

activity during the FRN/RewP time period (maximal at

~250 msec) significantly positively predicted response

times on the following (correct) trial. No correlation results

passed significance for positive reinforcement conditions.

Nonsignificant results are masked in the topographic plot

(top), and red shading in the bottom plot indicates ±SEM

around the Spearman correlation coefficients. The blue

shaded rectangle in the timecourse plot indicates

timepoints that were significant following correction for

multiple comparisons.
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negative reinforcement in the FRN/RewP is still unknown, as a

prior meta-analysis of PE magnitude effects on the FRN/RewP

did not separate positive and negative reinforcement

(Sambrook & Goslin, 2015). As such, our study appears to be

the first to demonstrate parametric effects of PE magnitude in

shaping the negative reinforcement aversion positivity. More

importantly, however, our results require a different theo-

retical interpretation than previous reports of the aversion

positivity. Previous discussions of the aversion positivity in

negative reinforcement have interpreted this effect as evi-

dence of salience coding, but we were able to dissociate

salience coding from value coding within the ERP using

orthogonal regressors. In fact, we found that signed and un-

signed PEs were both expressed in the negative reinforcement

feedback-locked ERP, but were largely dissociable e unsigned

PEs were reflected in the mediofrontal ERP in an earlier time

period than the usual FRN/RewP (Sambrook & Goslin, 2014,

2015, 2016). This suggests that, while we were able to replicate

previous reports of a negative reinforcement aversion posi-

tivity, this potential cannot be interpreted as a salience signal.

Instead, the aversion positivity must be interpreted as a

signed PE signal, or a flipped reward positivity.
To cement our interpretation of these ERP effects, we

decomposed single trials of EEG into delta (1e3 Hz) and theta

(4e8 Hz) bands (thought to underlie the RewP and the FRN,

respectively). Indeed, in delta-band activity we found evi-

dence that the aversion positivity previously noted in negative

reinforcement conditions can be interpreted as a flipped

reward positivity e in negative reinforcement conditions,

delta activity covaried negatively with the magnitude of the

signed PE regressor, indicating that delta-band activity

increased with increasingly aversive outcomes. Our results

indicated that in negative reinforcement, theta band activity

over frontal sensors also increased in power with increasingly

aversive outcomes. Thus, our results demonstrate that in

negative reinforcement, theta band activity follows the ex-

pected pattern (i.e., encoding aversive information), whereas

delta-band activity seems to give rise to the apparent “flipped”

reward positivity in negative reinforcement. This is the

opposite effect attributed to delta band activity, and the RewP,

in positive reinforcement conditions (Cavanagh, 2015), and

suggests the need for a new theoretical interpretation of the

RewP component in terms of brain responses in both positive

and negative reinforcement e as this component can clearly

not be interpreted as unilaterally reflecting reward processing

under the current results.

Single-trial ERP results were not significant following pos-

itive reinforcement, other than a brief signed PE effect over

parietal regions (~150 msec). This might point to a flaw in the

interpretation of previous study designs. Typical ERP studies

of reinforcement not only either deliver or omit rewards, but

also deliver win/loss feedback. This presents a confounding

factor, because mediofrontal ERPs are sensitive to errors and

error feedback. Prediction errors do not require behavioral

errors, but only that outcomes are better or worse than ex-

pected. Following correct feedback, we gave participants a

number of points that was better than, worse than, or as ex-

pected, isolating recognition of PEs from recognition of errors.

Mediofrontal responses to omitted rewards might be a

response to outcomes that are perceived as “errors,” rather

than a response to prediction errors specifically.

4.4. Mediofrontal predictors of behavioral modification

We demonstrated that the FRN/RewP can definitively be

interpreted as reflecting signed aversion signals in negative

reinforcement. Our results demonstrate that this aversion

positivity can also be unambiguously interpreted as a rein-

forcement learning signal. Our single-trial approach enabled

us to relate ERP amplitudes during reinforcement processing

to immediate (post-feedback) behavioral modification, thus

providing a stringent test of brainebehavior relationships

(Bridwell et al., 2018). We found a positive relationship be-

tween central ERP amplitude in negative reinforcement trials

and RT on the following trial, controlling for task-related in-

fluences on behavior. This demonstrates that the ERP predicts

negative reinforcement learning above-and-beyond any task

effects.

Intriguingly, previous results attempting to link the

feedback-locked ERP to behavioral modification have gener-

ated inconclusive evidence. Feedback-locked ERPs can differ-

entiate learners from non-learners in reinforcement learning

https://doi.org/10.1016/j.cortex.2021.03.012
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tasks (Bellebaum&Daum, 2008; Krigolson et al., 2009;Walsh&

Anderson, 2011), but sophisticated single-trial analyses

(Cavanagh, 2015) failed to find any within-subject link be-

tween feedback-locked brain activity and future behavioral

modification [but see (Fischer & Ullsperger, 2013), although

this study implicated parietal P3 rather than FRN/RewP]. Our

finding linking the FRN/RewP to behavioral modification leads

to an intuitive comparison of these reported effects with a

related ERP component that robustly predicts behavioral

modification (Cavanagh & Shackman, 2015) e the error-

related negativity (ERN). Indeed, the initial descriptions of

the FRN/RewP likened it to the previously described ERN

component, a mediofrontal/central component peaking

within the first 100 msec following commission of a behav-

ioral error (Gehring, Goss, Coles, Meyer, & Donchin, 1993;

Miltner, Braun, & Coles, 1997), and suggested the existence of

a feedback-locked negativity provided evidence of a generic

brain system for error monitoring (Holroyd & Coles, 2002).

Similar to our result for the FRN/RewP, the ERN has been

shown to predict post-error behavioral adjustments in ameta-

analysis (Cavanagh & Shackman, 2015) and many individual

reports (Beatty, Buzzell, Roberts, & Mcdonald, 2020; Debener

et al., 2005; Fischer, Danielmeier, Villringer, Klein, &

Ullsperger, 2016; Gehring et al., 1993; Kalfao�glu, Stafford, &

Milne, 2018). While it is important to note that our current

analyses did not include any error trials (or even post-error

trials, in the case of RT measurement), and therefore is un-

confounded by error monitoring, prior error monitoring re-

sults are nevertheless important to interpreting the results of

the current study. In particular, it is possible that the

feedback-locked ERP predicts behavioral modification only

following aversive outcomes, or outcomes indicating some

“generic” error e whether that is an error in prediction, or an

error in performance.

4.5. Advantages of our experiment over previous
experiments

Our task design and analysis advances the literature on

human reinforcement learning in several ways. As the FRN is

context-dependent (Pfabigan et al., 2015), we used random

ordering of positive and negative reinforcement trials coupled

with single-trial regression of previous trial modality, there-

fore controlling for any sequence effects. Second, our task

design presented PEs without errors or error feedback. Typical

FRN studies conflate correct answers with “good” outcomes,

and incorrect answers with “bad” outcomes, confounding

reinforcement processing and performance monitoring. Prior

experiments examining positive and negative reinforcement

are also confounded by failure to match outcome modality.

Mulligan and Hajcak (2018) compared reward/loss to punish-

ment/omission, and Heydari and Holroyd (2016) and Talmi

et al. (2013) compared reward/omission with punishment/

omission. However, in these tasks, conditions differed in

outcome modality (money vs shock) and reinforcement

timing (money is paid at the end of the study, but shocks are

delivered immediately), making it impossible to draw direct

comparisons between positive and negative reinforcement.

Most critical to the theoretical implications of this report,
previous reports of the aversion positivity have interpreted

this potential as evidence of salience coding in the ERP. Our

task design ensured that signed and unsigned PE terms were

orthogonal and therefore suitable for use in simultaneous

regression analysis. Being able to include both terms in a

single model allowed us to generate a novel conclusion e that

the negative reinforcement aversion positivity is not, in fact,

evidence of salience coding, but is instead aversive value

coding.
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